Mammalian TIMELESS and Tipin are evolutionarily conserved replication fork-associated factors

被引:113
作者
Gotter, Anthony L. [1 ]
Suppa, Christine
Emanuel, Beverly S.
机构
[1] Childrens Hosp Philadelphia, Div Human Genet & Mol Biol, Philadelphia, PA 19104 USA
[2] Univ Penn, Sch Med, Dept Pediat, Philadelphia, PA 19104 USA
关键词
TIMELESS; Tipin; DNA replication; checkpoint signaling; chromosome cohesion; SISTER-CHROMATID COHESION; NUCLEOTIDE EXCISION-REPAIR; CYCLE CHECKPOINT FUNCTION; EARLY EMBRYONIC LETHALITY; DNA-DAMAGE CHECKPOINT; SACCHAROMYCES-CEREVISIAE; CELL-CYCLE; S-PHASE; SCHIZOSACCHAROMYCES-POMBE; EUKARYOTIC DNA;
D O I
10.1016/j.jmb.2006.10.097
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The function of the mammalian TIMELESS protein (TIM) has been enigmatic. TIM is essential for early embryonic development, but little is known regarding its biochemical and cellular function. Although identified based on similarity to a Drosophila circadian clock factor, it also shares similarity with a second family of proteins that is more widely conserved throughout eukaryotes. Members of this second protein family in yeast (S.c. Tof1p, S.p. Swi1p) have been implicated in DNA synthesis, S-phase-dependent checkpoint activation and chromosome cohesion, three processes coordinated at the level of the replication fork complex. The present work demonstrates that mammalian TIM and its constitutive binding partner, Tipin (ortholog of S.c. Csm3p, S.p. Swi3p), are replisome-associated proteins. Both proteins associate with components of the endogenous replication fork complex, and are present at BrdU-positive DNA replication sites. Knock-down of TIM also compromises DNA replication efficiency. Further, the direct binding of the TIM-Tipin complex to the 34 kDa subunit of replication protein A provides a biochemical explanation for the potential coupling role of these proteins. Like TIM, Tipin is also involved in the molecular mechanism of UV-dependent checkpoint activation and cell growth arrest. Tipin additionally associates with peroxiredoxin2 and appears to be involved in checkpoint responses to H2O2, a role recently described for yeast versions of TIM and Tipin. Together, this work establishes TIM and Tipin as functional orthologs of their replisome-associated yeast counterparts capable of coordinating replication with genotoxic stress responses, and distinguishes mammalian TIM from the circadian-specific paralogs from which it was originally identified. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:36 / 52
页数:17
相关论文
共 61 条
[1]   Requirement of mammalian Timeless for circadian rhythmicity [J].
Barnes, JW ;
Tischkau, SA ;
Barnes, JA ;
Mitchell, JW ;
Burgoon, PW ;
Hickok, JR ;
Gillette, MU .
SCIENCE, 2003, 302 (5644) :439-442
[2]   ATR kinase activity regulates the intranuclear translocation of ATR and RPA following ionizing radiation [J].
Barr, SM ;
Leung, CG ;
Chang, EE ;
Cimprich, KA .
CURRENT BIOLOGY, 2003, 13 (12) :1047-1051
[3]  
Brown EJ, 2000, GENE DEV, V14, P397
[4]   Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint [J].
Byun, TS ;
Pacek, M ;
Yee, MC ;
Walter, JC ;
Cimprich, KA .
GENES & DEVELOPMENT, 2005, 19 (09) :1040-1052
[5]   Molecular anatomy and regulation of a stable replisome eukaryotic DNA at a paused replication fork [J].
Calzada, A ;
Hodgson, B ;
Kanemaki, M ;
Bueno, A ;
Labib, K .
GENES & DEVELOPMENT, 2005, 19 (16) :1905-1919
[6]   Chromosome cohesion is regulated by a clock gene paralogue TIM-1 [J].
Chan, RC ;
Chan, A ;
Jeon, M ;
Wu, TF ;
Pasqualone, D ;
Rougvie, AE ;
Meyer, BJ .
NATURE, 2003, 423 (6943) :1002-1009
[7]   Human claspin is required for replication checkpoint control [J].
Christiano, C ;
Chini, S ;
Chen, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (32) :30057-30062
[8]   swi1 and swi3 perform imprinting, pausing, and termination of DNA replication in S-pombe [J].
Dalgaard, JZ ;
Klar, AJS .
CELL, 2000, 102 (06) :745-751
[9]   Targeted disruption of the cell-cycle checkpoint gene ATR leads to early embryonic lethality in mice [J].
de Klein, A ;
Muijtjens, M ;
van Os, R ;
Verhoeven, Y ;
Smit, B ;
Carr, AM ;
Lehmann, AR ;
Hoeijmakers, JHJ .
CURRENT BIOLOGY, 2000, 10 (08) :479-482
[10]   Molecular mechanism of nucleotide excision repair [J].
de Laat, WL ;
Jaspers, NGJ ;
Hoeijmakers, JHJ .
GENES & DEVELOPMENT, 1999, 13 (07) :768-785