Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis

被引:394
作者
Xiong, Yan
Contento, Anthony L.
Nguyen, Phan Quang
Bassham, Diane C. [1 ]
机构
[1] Iowa State Univ Sci & Technol, Dept Genet Dev & Cell Biol, Ames, IA 50011 USA
[2] Iowa State Univ Sci & Technol, Interdept Plant Physiol Program, Ames, IA 50011 USA
[3] Iowa State Univ Sci & Technol, Inst Plant Sci, Ames, IA 50011 USA
[4] Iowa State Univ Sci & Technol, Interdept Genet Program, Ames, IA 50011 USA
关键词
D O I
10.1104/pp.106.092106
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Upon encountering oxidative stress, proteins are oxidized extensively by highly reactive and toxic reactive oxidative species, and these damaged, oxidized proteins need to be degraded rapidly and effectively. There are two major proteolytic systems for bulk degradation in eukaryotes, the proteasome and vacuolar autophagy. In mammalian cells, the 20S proteasome and a specific type of vacuolar autophagy, chaperone-mediated autophagy, are involved in the degradation of oxidized proteins in mild oxidative stress. However, little is known about how cells remove oxidized proteins when under severe oxidative stress. Using two macroautophagy markers, monodansylcadaverine and green fluorescent protein-AtATG8e, we here show that application of hydrogen peroxide or the reactive oxidative species inducer methyl viologen can induce macroautophagy in Arabidopsis ( Arabidopsis thaliana) plants. Macroautophagy-defective RNAi-AtATG18a transgenic plants are more sensitive to methyl viologen treatment than wild-type plants and accumulate a higher level of oxidized proteins due to a lower degradation rate. In the presence of a vacuolar H+-ATPase inhibitor, concanamycin A, oxidized proteins were detected in the vacuole of wild-type root cells but not RNAi-AtATG18a root cells. Together, our results indicate that autophagy is involved in degrading oxidized proteins under oxidative stress conditions in Arabidopsis.
引用
收藏
页码:291 / 299
页数:9
相关论文
共 44 条
[1]   Reactive oxygen species: Metabolism, oxidative stress, and signal transduction [J].
Apel, K ;
Hirt, H .
ANNUAL REVIEW OF PLANT BIOLOGY, 2004, 55 :373-399
[2]   Changes in the expression and the enzymic properties of the 20S proteasome in sugar-starved maize roots. Evidence for an in vivo oxidation of the proteasome [J].
Basset, G ;
Raymond, P ;
Malek, L ;
Brouquisse, R .
PLANT PHYSIOLOGY, 2002, 128 (03) :1149-1162
[3]   Hydroxyl-radical production in physiological reactions - A novel function of peroxidase [J].
Chen, SX ;
Schopfer, P .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1999, 260 (03) :726-735
[4]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[5]   Visualization of autophagy in Arabidopsis using the fluorescent dye monodansylcadaverine and a GFP-AtATG8e fusion protein [J].
Contento, AL ;
Xiong, Y ;
Bassham, DC .
PLANT JOURNAL, 2005, 42 (04) :598-608
[6]   Autophagy: in sickness and in health [J].
Cuervo, AM .
TRENDS IN CELL BIOLOGY, 2004, 14 (02) :70-77
[7]   Changes in hydrogen peroxide homeostasis trigger an active cell death process in tobacco [J].
Dat, JF ;
Pellinen, R ;
Beeckman, T ;
Van de Cotte, B ;
Langebartels, C ;
Kangasjärvi, J ;
Inzé, D ;
Van Breusegem, F .
PLANT JOURNAL, 2003, 33 (04) :621-632
[8]   Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis [J].
Davletova, S ;
Rizhsky, L ;
Liang, HJ ;
Zhong, SQ ;
Oliver, DJ ;
Coutu, J ;
Shulaev, V ;
Schlauch, K ;
Mittler, R .
PLANT CELL, 2005, 17 (01) :268-281
[9]   Regulation of the Arabidopsis transcriptome by oxidative stress [J].
Desikan, R ;
Mackerness, SAH ;
Hancock, JT ;
Neill, SJ .
PLANT PHYSIOLOGY, 2001, 127 (01) :159-172
[10]   The APG8/12-activating enzyme APG7 is required for proper nutrient recycling and senescence in Arabidopsis thaliana [J].
Doelling, JH ;
Walker, JM ;
Friedman, EM ;
Thompson, AR ;
Vierstra, RD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (36) :33105-33114