High molar extinction coefficient ion-coordinating ruthenium sensitizer for efficient and stable mesoscopic dye-sensitized solar cells

被引:164
作者
Kuang, Daibin [1 ]
Klein, Cedric [1 ]
Ito, Seigo [1 ]
Moser, Jacques-E. [1 ]
Humphry-Baker, Robin [1 ]
Zakeeruddin, Shaik. M. [1 ]
Graetzel, Michael [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Lab Photon & Interfaces, Inst Chem Sci & Engn, CH-1015 Lausanne, Switzerland
关键词
D O I
10.1002/adfm.200600483
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ru(4,4-dicarboxylic acid-2,2'-bipyridine) (4,4'-bis(2-(4-(1,4,7,10-tetraoxyundecyl)phenyl)ethenyl)-2,2'-bipyridine) (NCS)(2), a new high molar extinction coefficient ion-coordinating ruthenium sensitizer was synthesized and characterized using H-1 NMR, Fourier transform IR (FTIR), and UV/vis spectroscopies and cyclic voltammetry. Using this sensitizer in combination with a nonvolatile organic-solvent-based electrolyte, we obtain a photovoltaic efficiency of 8.4% under standard global AM 1.5 sunlight. These devices exhibit excellent stability when subjected to continuous thermal stress at 80 degrees C or light soaking at 60 degrees C for 1000 h. An electrochemical impedance spectroscopy study revealed that device stability is maintained by stabilizing the TiO2/dye/electrolyte and Pt/electrolyte interface during the aging process. The influence of Li+ present in the electrolyte on the device photovoltaic parameters was studied, and the FTIR spectral and photovoltage transient study showed that Li+ coordinates to the triethyleneoxide methylether side chains on the K60 sensitizer molecules.
引用
收藏
页码:154 / 160
页数:7
相关论文
共 31 条
[1]   Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the "oriented attachment" mechanism [J].
Adachi, M ;
Murata, Y ;
Takao, J ;
Jiu, JT ;
Sakamoto, M ;
Wang, FM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (45) :14943-14949
[2]   Parameters affecting electron injection dynamics from ruthenium dyes to titanium dioxide nanocrystalline thin film [J].
Asbury, JB ;
Anderson, NA ;
Hao, EC ;
Ai, X ;
Lian, TQ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (30) :7376-7386
[3]  
Bisquert J, 2002, J PHYS CHEM B, V106, P325, DOI 10.1021/jp01194lg
[4]   Determination of rate constants for charge transfer and the distribution of semiconductor and electrolyte electronic energy levels in dye-sensitized solar cells by open-circuit photovoltage decay method [J].
Bisquert, J ;
Zaban, A ;
Greenshtein, M ;
Mora-Seró, I .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (41) :13550-13559
[5]   Chemical capacitance of nanostructured semiconductors: its origin and significance for nanocomposite solar cells [J].
Bisquert, J .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2003, 5 (24) :5360-5364
[6]   Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy [J].
Fabregat-Santiago, F ;
Bisquert, J ;
Garcia-Belmonte, G ;
Boschloo, G ;
Hagfeldt, A .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2005, 87 (1-4) :117-131
[7]   Solar energy conversion by dye-sensitized photovoltaic cells [J].
Grätzel, M .
INORGANIC CHEMISTRY, 2005, 44 (20) :6841-6851
[8]   Mesoscopic solar cells for electricity and hydrogen production from sunlight [J].
Grätzel, M .
CHEMISTRY LETTERS, 2005, 34 (01) :8-13
[9]   Photoelectrochemical cells [J].
Grätzel, M .
NATURE, 2001, 414 (6861) :338-344
[10]   High efficiency of dye-sensitized solar cells based on metal-free indoline dyes [J].
Horiuchi, T ;
Miura, H ;
Sumioka, K ;
Uchida, S .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (39) :12218-12219