Biomolecule-nanoparticle hybrid systems for bioelectronic applications

被引:175
作者
Willner, Itamar [1 ]
Willner, Bilha [1 ]
Katz, Eugenii [1 ]
机构
[1] Hebrew Univ Jerusalem, Inst Chem, IL-91904 Jerusalem, Israel
关键词
nanobiotechnology; nanoparticles; enzymes; DNA; electrochemistry; photoelectrochemistry;
D O I
10.1016/j.bioelechem.2006.03.013
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent advances in nanobiotechnology involve the use of biomolecule-nanoparticle (NP) hybrid systems for bioelectronic applications. This is exemplified by the electrical contacting of redox enzymes by means of Au-NPs. The enzymes, glucose oxidase, GOx, and glucose dehydrogenase, GDH, are electrically contacted with the electrodes by the reconstitution of the corresponding apo-proteins on flavin adenine dinucleotide (FAD) or pyrroloquinoline quinone (PQQ)-functionalized Au-NPs (1.4 rim) associated with electrodes, respectively. Similarly, Au-NPs integrated into polyaniline in a micro-rod configuration associated with electrodes provides a high surface area matrix with superior charge transport properties for the effective electrical contacting of GOx with the electrode. A different application of biomolecule-Au-NP hybrids for bioelectronics involves the use of Au-NPs as carriers for a nucleic acid that is composed of hemin/G-quadruplex DNAzyme units and a detecting segment complementary to the analyte DNA. The functionalized Au-NPs are employed for the amplified DNA detection, and for the analysis of telomerase activity in cancer cells, using chemiluminescence as a readout signal. Biomolecule-semiconductor NP hybrid systems are used for the development of photoelectrochemical sensors and optoelectronic systems. A hybrid system consisting of acetylcholine esterase (AChE)/CdS-NPs is immobilized in a monolayer configuration on an electrode. The photocurrent generated by the system in the presence of thioacetylcholine as substrate provides a means to probe the AChE activity. The blocking of the photocurrent by 1,5-bis(4-allyldimethyl ammonium phenyl)pentane-3-one dibromide as nerve gas analog enables the photoelectrochemical analysis of AChE inhibitors. Also, the association CdS-NP/double-stranded DNA hybrid systems with a Au-electrode, and the intercalation of methylene blue into the double-stranded DNA, generates an organized nanostructure of switchable photoelectrochemical functions. Electrochemical reduction of the intercalator to the leuco form, -0.4 V vs. SCE, results in a cathodic photocurrent as a result of the transfer of photoexcited conduction-band electrons to 02 and the transport of electrons to the valance-band holes by the reduced intercalator units. The oxidation of the intercalator, E 0 V (vs. SCE), yields in the presence of triethanolamine, TEOA, as sacrificial electron donor, an anodic photocurrent by the transport of conduction-band electrons, through intercalator units, to the electrodes, and filling the valance-band holes with electrons supplied by TEOA. The systems reveal potential-switchable directions of the photocurrents, and reveal logic gate functions. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:2 / 11
页数:10
相关论文
共 41 条
[1]  
BARMAN TE, 1969, ENZYME HDB, V2, P508
[2]  
BARTLETT P N, 1991, Progress in Reaction Kinetics, V16, P55
[3]   A FULLY ACTIVE MONOLAYER ENZYME ELECTRODE DERIVATIZED BY ANTIGEN-ANTIBODY ATTACHMENT [J].
BOURDILLON, C ;
DEMAILLE, C ;
GUERIS, J ;
MOIROUX, J ;
SAVEANT, JM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1993, 115 (26) :12264-12269
[4]   DNA enzymes [J].
Breaker, RR .
NATURE BIOTECHNOLOGY, 1997, 15 (05) :427-431
[5]   Catalytic DNA: in training and seeking employment [J].
Breaker, RR .
NATURE BIOTECHNOLOGY, 1999, 17 (05) :422-423
[6]   Semiconductor nanocrystals as fluorescent biological labels [J].
Bruchez, M ;
Moronne, M ;
Gin, P ;
Weiss, S ;
Alivisatos, AP .
SCIENCE, 1998, 281 (5385) :2013-2016
[7]   CHARACTERIZATION OF A FERROCENE CONTAINING POLYACRYLAMIDE-BASED REDOX GEL FOR BIOSENSOR USE [J].
BU, HZ ;
MIKKELSEN, SR ;
ENGLISH, AM .
ANALYTICAL CHEMISTRY, 1995, 67 (22) :4071-4076
[8]   Quantum dot bioconjugates for ultrasensitive nonisotopic detection [J].
Chan, WCW ;
Nie, SM .
SCIENCE, 1998, 281 (5385) :2016-2018
[9]   DIRECT ELECTRICAL COMMUNICATION BETWEEN CHEMICALLY MODIFIED ENZYMES AND METAL-ELECTRODES .1. ELECTRON-TRANSFER FROM GLUCOSE-OXIDASE TO METAL-ELECTRODES VIA ELECTRON RELAYS, BOUND COVALENTLY TO THE ENZYME [J].
DEGANI, Y ;
HELLER, A .
JOURNAL OF PHYSICAL CHEMISTRY, 1987, 91 (06) :1285-1289
[10]   Deoxyribozymes: new activities and new applications [J].
Emilsson, GM ;
Breaker, RR .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2002, 59 (04) :596-607