Drought, abscisic acid and transpiration rate effects on the regulation of PIP aquaporin gene expression and abundance in Phaseolus vulgaris plants

被引:141
作者
Aroca, Ricardo
Ferrante, Antonio
Vernieri, Paolo
Chrispeels, Maarten J.
机构
[1] Univ Calif San Diego, Div Biol Sci, La Jolla, CA 92093 USA
[2] Univ Pisa, Dipartimento Biol Piante Agr, I-56100 Pisa, Italy
关键词
abscisic acid; drought; methotrexate; Phaseolus vulgaris; plasma membrane aquaporins; root hydraulic conductance; transpiration rate; PLASMA-MEMBRANE AQUAPORINS; POPULUS-TREMULOIDES SEEDLINGS; WATER-USE EFFICIENCY; HYDRAULIC CONDUCTIVITY; INTRINSIC PROTEINS; ROOT-PRESSURE; GLYCINE-MAX; MIP GENES; STRESS; ARABIDOPSIS;
D O I
10.1093/aob/mcl219
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background and Aims Drought causes a decline of root hydraulic conductance, which aside from embolisms, is governed ultimately by aquaporins. Multiple factors probably regulate aquaporin expression, abundance and activity in leaf and root tissues during drought; among these are the leaf transpiration rate, leaf water status, abscisic acid (ABA) and soil water content. Here a study is made of how these factors could influence the response of aquaporin to drought. Methods Three plasma membrane intrinsic proteins (PIPs) or aquaporins were cloned from Phaseolus vulgaris plants and their expression was analysed after 4 d of water deprivation and also 1 d after re-watering. The effects of ABA and of methotrexate (MTX), an inhibitor of stomatal opening, on gene expression and protein abundance were also analysed. Protein abundance was examined using antibodies against PIP1 and PIP2 aquaporins. At the same time, root hydraulic conductance (L), transpiration rate, leaf water status and ABA tissue concentration were measured. Key Results None of the treatments (drought, ABA or MTX) changed the leaf water status or tissue ABA concentration. The three treatments caused a decline in the transpiration rate and raised PVPIP2;1 gene expression and PIP1 protein abundance in the leaves. In the roots, only the drought treatment raised the expression of the three PIP genes examined, while at the same time diminishing PIP2 protein abundance and L. On the other hand, ABA raised both root PIP1 protein abundance and L. Conclusions The rise of PvPIP2;1 gene expression and PIP1 protein abundance in the leaves of P. vulgaris plants subjected to drought was correlated with a decline in the transpiration rate. At the same time, the increase in the expression of the three PIP genes examined caused by drought and the decline of PIP2 protein abundance in the root tissues were not correlated with any of the parameters measured.
引用
收藏
页码:1301 / 1310
页数:10
相关论文
共 59 条
[1]   Overexpression of a plasma membrane aquaporin in transgenic tobacco improves plant vigor under favorable growth conditions but not under drought or salt stress [J].
Aharon, R ;
Shahak, Y ;
Wininger, S ;
Bendov, R ;
Kapulnik, Y ;
Galili, G .
PLANT CELL, 2003, 15 (02) :439-447
[2]   Whole gene family expression and drought stress regulation of aquaporins [J].
Alexandersson, E ;
Fraysse, L ;
Sjövall-Larsen, S ;
Gustavsson, S ;
Fellert, M ;
Karlsson, M ;
Johanson, U ;
Kjellbom, P .
PLANT MOLECULAR BIOLOGY, 2005, 59 (03) :469-484
[3]   Exogenous catalase and ascorbate modify the effects of abscisic acid (ABA) on root hydraulic properties in Phaseolus vulgaris L. Plants [J].
Aroca, R .
JOURNAL OF PLANT GROWTH REGULATION, 2006, 25 (01) :10-17
[4]   The role of Aquaporins and membrane damage in chilling and hydrogen peroxide induced changes in the hydraulic conductance of maize roots [J].
Aroca, R ;
Amodeo, G ;
Fernández-Illescas, S ;
Herman, EM ;
Chaumont, F ;
Chrispeels, MJ .
PLANT PHYSIOLOGY, 2005, 137 (01) :341-353
[5]   Involvement of abscisic acid in leaf and root of maize (Zea mays L.) in avoiding chilling-induced water stress [J].
Aroca, R ;
Vernieri, P ;
Irigoyen, JJ ;
Sánchez-Díaz, M ;
Tognoni, F ;
Pardossi, A .
PLANT SCIENCE, 2003, 165 (03) :671-679
[6]  
Augé RM, 2004, CAN J BOT, V82, P503, DOI [10.1139/b04-020, 10.1139/B04-020]
[7]   Early effects of salinity on water transport in Arabidopsis roots. Molecular and cellular features of aquaporin expression [J].
Boursiac, Y ;
Chen, S ;
Luu, DT ;
Sorieul, M ;
van den Dries, N ;
Maurel, C .
PLANT PHYSIOLOGY, 2005, 139 (02) :790-805
[8]   Genes commonly regulated by water-deficit stress in Arabidopsis thaliana [J].
Bray, EA .
JOURNAL OF EXPERIMENTAL BOTANY, 2004, 55 (407) :2331-2341
[9]   Beans (Phaseolus spp.) -: model food legumes [J].
Broughton, WJ ;
Hernández, G ;
Blair, M ;
Beebe, S ;
Gepts, P ;
Vanderleyden, J .
PLANT AND SOIL, 2003, 252 (01) :55-128
[10]  
CAMPOS F, 1997, PLANT PHYSIOL, V115, P113