Single-cell-based system to monitor carrier driven cellular auxin homeostasis

被引:25
作者
Barbez, Elke [1 ,2 ,3 ]
Lankova, Martina [4 ]
Parezova, Marketa [4 ]
Maizel, Alexis [5 ]
Zazimalova, Eva [4 ]
Petrasek, Jan [4 ]
Friml, Jiri [1 ,2 ,6 ,7 ]
Kleine-Vehn, Jurgen [1 ,2 ,3 ]
机构
[1] Univ Ghent VIB, Dept Plant Syst Biol, B-9052 Ghent, Belgium
[2] Univ Ghent, Dept Plant Biotechnol & Genet, B-9052 Ghent, Belgium
[3] Univ Nat Resources & Life Sci, Dept Appl Genet & Cell Biol, Vienna BOKU, A-1190 Vienna, Austria
[4] Acad Sci Czech Republ, Inst Expt Bot, CR-16502 Prague 6, Czech Republic
[5] Heidelberg Univ, Ctr Organismal Studies, Dept Stem Cell Biol, D-69120 Heidelberg, Germany
[6] Masaryk Univ, Fac Sci, Dept Funct Genom & Prote, CZ-62500 Brno, Czech Republic
[7] Masaryk Univ, CEITEC, CZ-62500 Brno, Czech Republic
来源
BMC PLANT BIOLOGY | 2013年 / 13卷
关键词
Auxin homeostasis; DR5; Auxin carrier; Auxin transport; CULTURED TOBACCO CELLS; ROOT HAIR-CELLS; PLASMA-MEMBRANE; PLANT-CELLS; AUX/IAA PROTEINS; PIN PROTEINS; ARABIDOPSIS; TRANSPORT; EFFLUX; TRANSFORMATION;
D O I
10.1186/1471-2229-13-20
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background: Abundance and distribution of the plant hormone auxin play important roles in plant development. Besides other metabolic processes, various auxin carriers control the cellular level of active auxin and, hence, are major regulators of cellular auxin homeostasis. Despite the developmental importance of auxin transporters, a simple medium-to-high throughput approach to assess carrier activities is still missing. Here we show that carrier driven depletion of cellular auxin correlates with reduced nuclear auxin signaling in tobacco Bright Yellow-2 (BY-2) cell cultures. Results: We developed an easy to use transient single-cell-based system to detect carrier activity. We use the relative changes in signaling output of the auxin responsive promoter element DR5 to indirectly visualize auxin carrier activity. The feasibility of the transient approach was demonstrated by pharmacological and genetic interference with auxin signaling and transport. As a proof of concept, we provide visual evidence that the prominent auxin transport proteins PIN-FORMED (PIN) 2 and PIN5 regulate cellular auxin homeostasis at the plasma membrane and endoplasmic reticulum (ER), respectively. Our data suggest that PIN2 and PIN5 have different sensitivities to the auxin transport inhibitor 1-naphthylphthalamic acid (NPA). Also the putative PIN-LIKES (PILS) auxin carrier activity at the ER is insensitive to NPA in our system, indicating that NPA blocks intercellular, but not intracellular auxin transport. Conclusions: This single-cell-based system is a useful tool by which the activity of putative auxin carriers, such as PINs, PILS and WALLS ARE THIN1 (WAT1), can be indirectly visualized in a medium-to-high throughput manner. Moreover, our single cell system might be useful to investigate also other hormonal signaling pathways, such as cytokinin.
引用
收藏
页数:13
相关论文
共 66 条
[1]   Intracellular trafficking and proteolysis of the Arabidopsis auxin-efflux facilitator PIN2 are involved in root gravitropism [J].
Abas, L ;
Benjamins, R ;
Malenica, N ;
Paciorek, T ;
Wirniewska, J ;
Moulinier-Anzola, JC ;
Sieberer, T ;
Friml, J ;
Luschnig, C .
NATURE CELL BIOLOGY, 2006, 8 (03) :249-256
[2]   HIGH-EFFICIENCY TRANSFORMATION OF CULTURED TOBACCO CELLS [J].
AN, GH .
PLANT PHYSIOLOGY, 1985, 79 (02) :568-570
[3]  
[Anonymous], J PART SCI TECHNOL
[4]   Divide Et Impera-cellular auxin compartmentalization [J].
Barbez, Elke ;
Kleine-Vehn, Juergen .
CURRENT OPINION IN PLANT BIOLOGY, 2013, 16 (01) :78-84
[5]   A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants [J].
Barbez, Elke ;
Kubes, Martin ;
Rolcik, Jakub ;
Beziat, Chloe ;
Pencik, Ales ;
Wang, Bangjun ;
Rosquete, Michel Ruiz ;
Zhu, Jinsheng ;
Dobrev, Petre I. ;
Lee, Yuree ;
Zazimalova, Eva ;
Petrasek, Jan ;
Geisler, Markus ;
Friml, Jiri ;
Kleine-Vehn, Juergen .
NATURE, 2012, 485 (7396) :119-U155
[6]   Local, efflux-dependent auxin gradients as a common module for plant organ formation [J].
Benková, E ;
Michniewicz, M ;
Sauer, M ;
Teichmann, T ;
Seifertová, D ;
Jürgens, G ;
Friml, J .
CELL, 2003, 115 (05) :591-602
[7]   Arabidopsis AUX1 gene: A permease-like regulator of root gravitropism [J].
Bennett, MJ ;
Marchant, A ;
Green, HG ;
May, ST ;
Ward, SP ;
Millner, PA ;
Walker, AR ;
Schulz, B ;
Feldmann, KA .
SCIENCE, 1996, 273 (5277) :948-950
[8]   Auxin transport [J].
Blakeslee, JJ ;
Peer, WA ;
Murphy, AS .
CURRENT OPINION IN PLANT BIOLOGY, 2005, 8 (05) :494-500
[9]   The plasma membrane recycling pathway and cell polarity in plants:: studies on PIN proteins [J].
Boutté, Y ;
Crosnier, MT ;
Carraro, N ;
Traas, J ;
Satiat-Jeunemaitre, B .
JOURNAL OF CELL SCIENCE, 2006, 119 (07) :1255-1265
[10]   A novel sensor to map auxin response and distribution at high spatio-temporal resolution [J].
Brunoud, Geraldine ;
Wells, Darren M. ;
Oliva, Marina ;
Larrieu, Antoine ;
Mirabet, Vincent ;
Burrow, Amy H. ;
Beeckman, Tom ;
Kepinski, Stefan ;
Traas, Jan ;
Bennett, Malcolm J. ;
Vernoux, Teva .
NATURE, 2012, 482 (7383) :103-U132