14-3-3 proteins and signal transduction

被引:142
作者
Ferl, RJ
机构
[1] Prog. Plant Molec. and Cell. Biol., Department of Horticultural Sciences, University of Florida, Gainesville
来源
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY | 1996年 / 47卷
关键词
protein interactions; signaling; phosphorylation;
D O I
10.1146/annurev.arplant.47.1.49
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Perhaps in keeping with their enigmatic name, 14-3-3 proteins offer a seemingly bewildering array of opportunities for interaction with signal transduction pathways. In each organism there are many isoforms that can form both homo- and heterodimers, and many biochemical activities have been attributed to the 14-3-3 group. The potential for diversity-and also confusion-is high. The mammalian literature on 14-3-3 proteins provides an appropriate context to appreciate the potential roles of 14-3-3s in plant signal transduction pathways. In addition, functional and structural themes emerge when 14-3-3s are examined and compiled in ways that draw attention to their participation in protein phosphorylation and protein-protein interactions. These themes allow examination of plant 14-3-3s from two perspectives: the ways in which plant 14-3-3s contribute to and extend ideas already described in animals, and the ways that plant 14-3-3s present unique contributions to the field. The crystal structure of an animal 14-3-3 has been solved. When considered with the evolutionary stability of large segments of the 14-3-3 protein, the structure illuminates several aspects of 14-3-3 function. However, diversity in other regions of the 14-3-3s and their presence as multigene families offer many opportunities for cell-specific specialization of individual functions.
引用
收藏
页码:49 / 73
页数:25
相关论文
共 80 条
[1]  
AITKEN A, 1990, NATURE, V344, P594
[2]   14-3-3-ALPHA AND 14-3-3-DELTA ARE THE PHOSPHORYLATED FORMS OF RAF-ACTIVATING 14-3-3-BETA AND 14-3-3-ZETA - IN-VIVO STOICHIOMETRIC PHOSPHORYLATION IN BRAIN AT A SER-PRO-GLU-LYS MOTIF [J].
AITKEN, A ;
HOWELL, S ;
JONES, D ;
MADRAZO, J ;
PATEL, Y .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (11) :5706-5709
[3]   14-3-3 PROTEINS ON THE MAP [J].
AITKEN, A .
TRENDS IN BIOCHEMICAL SCIENCES, 1995, 20 (03) :95-97
[4]   14-3-3 PROTEINS - A HIGHLY CONSERVED, WIDESPREAD FAMILY OF EUKARYOTIC PROTEINS [J].
AITKEN, A ;
COLLINGE, DB ;
VANHEUSDEN, BPH ;
ISOBE, T ;
ROSEBOOM, PH ;
ROSENFELD, G ;
SOLL, J .
TRENDS IN BIOCHEMICAL SCIENCES, 1992, 17 (12) :498-501
[5]   CDNA CLONING AND CHARACTERIZATION OF MITOCHONDRIAL IMPORT STIMULATION FACTOR (MSF) PURIFIED FROM RAT-LIVER CYTOSOL [J].
ALAM, R ;
HACHIYA, N ;
SAKAGUCHI, M ;
KAWABATA, S ;
IWANAGA, S ;
KITAJIMA, M ;
MIHARA, K ;
OMURA, T .
JOURNAL OF BIOCHEMISTRY, 1994, 116 (02) :416-425
[6]   PURIFICATION, PROPERTIES, AND IMMUNOHISTOCHEMICAL LOCALIZATION OF HUMAN-BRAIN 14-3-3 PROTEIN [J].
BOSTON, PF ;
JACKSON, P ;
KYNOCH, PAM ;
THOMPSON, RJ .
JOURNAL OF NEUROCHEMISTRY, 1982, 38 (05) :1466-1474
[7]   HUMAN 14-3-3 PROTEIN - RADIOIMMUNOASSAY, TISSUE DISTRIBUTION, AND CEREBROSPINAL-FLUID LEVELS IN PATIENTS WITH NEUROLOGICAL DISORDERS [J].
BOSTON, PF ;
JACKSON, P ;
THOMPSON, RJ .
JOURNAL OF NEUROCHEMISTRY, 1982, 38 (05) :1475-1482
[8]   A PATHOGEN-INDUCED GENE OF BARLEY ENCODES A PROTEIN SHOWING HIGH SIMILARITY TO A PROTEIN-KINASE REGULATOR [J].
BRANDT, J ;
THORDALCHRISTENSEN, H ;
VAD, K ;
GREGERSEN, PL ;
COLLINGE, DB .
PLANT JOURNAL, 1992, 2 (05) :815-820
[9]   14-3-3-PROTEINS - HOT NUMBERS IN SIGNAL-TRANSDUCTION [J].
BURBELO, PD ;
HALL, A .
CURRENT BIOLOGY, 1995, 5 (02) :95-96
[10]   A NACL-REGULATED PLANT GENE ENCODING A BRAIN PROTEIN HOMOLOG THAT ACTIVATES ADP RIBOSYLTRANSFERASE AND INHIBITS PROTEIN-KINASE-C [J].
CHEN, ZT ;
FU, HI ;
LIU, D ;
CHANG, PFL ;
NARASIMHAN, M ;
FERL, R ;
HASEGAWA, PM ;
BRESSAN, RA .
PLANT JOURNAL, 1994, 6 (05) :729-740