Vibrational predissociation spectroscopy of the (H2O)-6-21clusters in the OH stretching region:: Evolution of the excess electron-binding signature into the intermediate cluster size regime -: art. no. 244311

被引:63
作者
Hammer, NI [1 ]
Roscioli, JR [1 ]
Bopp, JC [1 ]
Headrick, JM [1 ]
Johnson, MA [1 ]
机构
[1] Yale Univ, Sterling Chem Lab, New Haven, CT 06520 USA
关键词
D O I
10.1063/1.2134701
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report vibrational predissociation spectra of the (H2O)(n)(-) cluster ions in the OH stretching region to determine whether the spectral signature of the electron-binding motif identified in the smaller clusters [Hammer et al. Science 306, 675 (2004)] continues to be important in the intermediate size regime (n=7-21). This signature consists of a redshifted doublet that dominates the OH stretching region, and has been traced primarily to the excitation of a single water molecule residing in a double H-bond acceptor (AA) binding site, oriented with both of its H atoms pointing toward the excess electron cloud. Strong absorption near the characteristic AA doublet is found to persist in the spectra of the larger clusters, but the pattern evolves into a broadened triplet around n=11. A single free OH feature associated with dangling hydrogen atoms on the cluster surface is observed to emerge for n >= 15, in sharp contrast to the multiplet pattern of unbonded OH stretches displayed by the H+.(H2O)(n) clusters throughout the n=2-29 range. We also explore the vibration-electronic coupling associated with normal-mode displacements of the AA molecule that most strongly interact with the excess electron. Specifically, electronic structure calculations on the hexamer anion indicate that displacement along the -OH2 symmetric stretching mode dramatically distorts the excess electron cloud, thus accounting for the anomalously large oscillator strength of the AA water stretching vibrations. We also discuss these vibronic interactions in the context of a possible relaxation mechanism for the excited electronic states involving the excess electron. (c) 2005 American Institute of Physics.
引用
收藏
页数:7
相关论文
共 61 条
[1]   Infrared spectroscopy of negatively charged water clusters: Evidence for a linear network [J].
Ayotte, P ;
Weddle, GH ;
Bailey, CG ;
Johnson, MA ;
Vila, F ;
Jordan, KD .
JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (13) :6268-6277
[2]   Vibrational spectroscopy of the ionic hydrogen bond:: Fermi resonances and ion-molecule stretching frequencies in the binary X-•H2O (X = Cl, Br, I) complexes via argon predissociation spectroscopy [J].
Ayotte, P ;
Weddle, GH ;
Kim, J ;
Johnson, MA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120 (47) :12361-12362
[3]  
AYOTTE P, 1999, THESIS YALE U NEW HA
[4]  
Baltuska A, 1999, J PHYS CHEM A, V103, P10065, DOI 10.1021/jp992482a
[5]   ELECTRON LOCALIZATION IN WATER CLUSTERS .1. ELECTRON-WATER PSEUDOPOTENTIAL [J].
BARNETT, RN ;
LANDMAN, U ;
CLEVELAND, CL ;
JORTNER, J .
JOURNAL OF CHEMICAL PHYSICS, 1988, 88 (07) :4421-4428
[6]   Moment analysis of hydrated electron cluster spectra: Surface or internal states? [J].
Bartels, DM .
JOURNAL OF CHEMICAL PHYSICS, 2001, 115 (09) :4404-4405
[7]   Wet electrons and how to dry them [J].
Beyer, MK ;
Fox, BS ;
Reinhard, BM ;
Bondybey, VE .
JOURNAL OF CHEMICAL PHYSICS, 2001, 115 (20) :9288-9297
[8]   Hydrated electron dynamics: From clusters to bulk [J].
Bragg, AE ;
Verlet, JRR ;
Kammrath, A ;
Cheshnovsky, O ;
Neumark, DM .
SCIENCE, 2004, 306 (5696) :669-671
[9]   SIZE-DEPENDENT COLLISIONAL INCORPORATION OF D2O INTO (H2O)N- AROUND N=15 - IMPLICATIONS ON THE ORIGIN OF MAGIC NUMBERS IN THE HYDRATED ELECTRON CLUSTER DISTRIBUTION [J].
CAMPAGNOLA, PJ ;
CYR, DM ;
JOHNSON, MA .
CHEMICAL PHYSICS LETTERS, 1991, 181 (2-3) :206-212
[10]   PHOTOELECTRON-SPECTROSCOPY OF HYDRATED ELECTRON CLUSTER ANIONS, (H2O)N-=2-69 [J].
COE, JV ;
LEE, GH ;
EATON, JG ;
ARNOLD, ST ;
SARKAS, HW ;
BOWEN, KH ;
LUDEWIGT, C ;
HABERLAND, H ;
WORSNOP, DR .
JOURNAL OF CHEMICAL PHYSICS, 1990, 92 (06) :3980-3982