Numerical determination of the avalanche exponents of the Bak-Tang-Wiesenfeld model

被引:98
作者
Lubeck, S
Usadel, KD
机构
[1] Theoretische Tieftemperaturphysik, Gerhard-Mercator-Universität Duisburg, Duisburg, 47048
来源
PHYSICAL REVIEW E | 1997年 / 55卷 / 04期
关键词
D O I
10.1103/PhysRevE.55.4095
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider the Bak-Tang-Wiesenfeld sandpile model on a two-dimensional square lattice of lattice sizes up to L=4096. A detailed analysis of the probability distribution of the size, area, duration, and radius of the avalanches will be given. To increase the accuracy of the determination of the avalanche exponents we introduce a new method for analyzing the data which reduces the finite-size effects of the measurements. The exponents of the avalanche distributions differ slightly from previous measurements and estimates obtained from a renormalization group approach.
引用
收藏
页码:4095 / 4099
页数:5
相关论文
共 20 条
[1]   SELF-ORGANIZED CRITICALITY [J].
BAK, P ;
TANG, C ;
WIESENFELD, K .
PHYSICAL REVIEW A, 1988, 38 (01) :364-374
[2]   SELF-ORGANIZED CRITICALITY - AN EXPLANATION OF 1/F NOISE [J].
BAK, P ;
TANG, C ;
WIESENFELD, K .
PHYSICAL REVIEW LETTERS, 1987, 59 (04) :381-384
[3]   Universality in sandpile models [J].
BenHur, A ;
Biham, O .
PHYSICAL REVIEW E, 1996, 53 (02) :R1317-R1320
[4]   SANDPILE MODELS WITH AND WITHOUT AN UNDERLYING SPATIAL STRUCTURE [J].
CHRISTENSEN, K ;
OLAMI, Z .
PHYSICAL REVIEW E, 1993, 48 (05) :3361-3372
[5]   EXACTLY SOLVED MODEL OF SELF-ORGANIZED CRITICAL PHENOMENA [J].
DHAR, D ;
RAMASWAMY, R .
PHYSICAL REVIEW LETTERS, 1989, 63 (16) :1659-1662
[6]   SELF-ORGANIZED CRITICAL STATE OF SANDPILE AUTOMATON MODELS [J].
DHAR, D .
PHYSICAL REVIEW LETTERS, 1990, 64 (14) :1613-1616
[7]   DYNAMIC RENORMALIZATION-GROUP APPROACH TO SELF-ORGANIZED CRITICAL PHENOMENA [J].
DIAZGUILERA, A .
EUROPHYSICS LETTERS, 1994, 26 (03) :177-182
[8]   Simplest possible self-organized critical system [J].
Flyvbjerg, H .
PHYSICAL REVIEW LETTERS, 1996, 76 (06) :940-943
[9]  
GRIMMET GR, 1992, PROBABILITY RANDOM P
[10]   Critical behavior of the sandpile model as a self-organized branching process [J].
Ivashkevich, EV .
PHYSICAL REVIEW LETTERS, 1996, 76 (18) :3368-3371