A short segment of the R domain of cystic fibrosis transmembrane conductance regulator contains channel stimulatory and inhibitory activities that are separable by sequence modification

被引:25
作者
Xie, JX
Adams, LM
Zhao, JY
Gerken, TA
Davis, PB
Ma, JJ
机构
[1] Univ Med & Dent New Jersey, Robert Wood Johnson Med Sch, Dept Physiol & Biophys, Piscataway, NJ 08854 USA
[2] Case Western Reserve Univ, Sch Med, Dept Pediat, Cleveland, OH 44106 USA
[3] Case Western Reserve Univ, Sch Med, Dept Biochem, Cleveland, OH 44106 USA
[4] Case Western Reserve Univ, Sch Med, Dept Physiol & Biophys, Cleveland, OH 44106 USA
关键词
D O I
10.1074/jbc.M201661200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The regulatory (R) domain of the cystic fibrosis transmembrane conductance regulator (CFTR) contains con. sensus phosphorylation sites for cAMP-dependent protein kinase (PKA) that are the basis for physiological regulation of the CFTR chloride channel. A short peptide segment in the R domain with a net negative charge of B9 (amino acids 817-838, NEG2) and predicted helical tendency is shown to play a critical role in CFTR chloride channel function. Deletion of NEG2 from CFTR completely eliminates the PKA dependence of channel activity. Exogenous NEG2 peptide interacts with CFTR to exert both stimulatory and inhibitory effects on the channel function. The NEG2 peptide with sequence scrambled to remove helical tendencies also inhibits channel function, but does not stimulate. Similar results are found for a NEG2 peptide whose helical structure is disrupted by a proline residue. When six of the negatively charged carboxylic acid residues are replaced by their cognate amides, reducing net negative charge to B3, but increasing helical propensity as assessed by circular dichroism, the peptide stimulates CFTR channel function, but does not inhibit. We speculate that the NEG2 region interacts with other cytosolic domains of CFTR to control opening and closing transitions of the chloride channel.
引用
收藏
页码:23019 / 23027
页数:9
相关论文
共 41 条
[1]   NUCLEOSIDE TRIPHOSPHATES ARE REQUIRED TO OPEN THE CFTR CHLORIDE CHANNEL [J].
ANDERSON, MP ;
BERGER, HA ;
RICH, DP ;
GREGORY, RJ ;
SMITH, AE ;
WELSH, MJ .
CELL, 1991, 67 (04) :775-784
[2]   THE ANOMALOUS ELECTROPHORETIC BEHAVIOR OF THE HUMAN PAPILLOMAVIRUS TYPE-16 E7-PROTEIN IS DUE TO THE HIGH CONTENT OF ACIDIC AMINO-ACID-RESIDUES [J].
ARMSTRONG, DJ ;
ROMAN, A .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1993, 192 (03) :1380-1387
[3]   Cystic fibrosis transmembrane conductance regulator Cl- channels with R domain deletions and translocations show phosphorylation-dependent and -independent activity [J].
Baldursson, O ;
Ostedgaard, LS ;
Rokhlina, T ;
Cotten, JF ;
Welsh, MJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (03) :1904-1910
[4]   PURIFICATION AND FUNCTIONAL RECONSTITUTION OF THE CYSTIC-FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR (CFTR) [J].
BEAR, CE ;
LI, CH ;
KARTNER, N ;
BRIDGES, RJ ;
JENSEN, TJ ;
RAMJEESINGH, M ;
RIORDAN, JR .
CELL, 1992, 68 (04) :809-818
[5]   THE 2 NUCLEOTIDE-BINDING DOMAINS OF CYSTIC-FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR (CFTR) HAVE DISTINCT FUNCTIONS IN CONTROLLING CHANNEL ACTIVITY [J].
CARSON, MR ;
TRAVIS, SM ;
WELSH, MJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (04) :1711-1717
[6]  
CHANG XB, 1993, J BIOL CHEM, V268, P11304
[7]   DETERMINATION OF HELIX AND BETA-FORM OF PROTEINS IN AQUEOUS-SOLUTION BY CIRCULAR-DICHROISM [J].
CHEN, YH ;
YANG, JT ;
CHAU, KH .
BIOCHEMISTRY, 1974, 13 (16) :3350-3359
[8]   PHOSPHORYLATION OF THE R-DOMAIN BY CAMP-DEPENDENT PROTEIN-KINASE REGULATES THE CFTR CHLORIDE CHANNEL [J].
CHENG, SH ;
RICH, DP ;
MARSHALL, J ;
GREGORY, RJ ;
WELSH, MJ ;
SMITH, AE .
CELL, 1991, 66 (05) :1027-1036
[9]   Covalent modification of the regulatory domain irreversibly stimulates cystic fibrosis transmembrane conductance regulators [J].
Cotten, JF ;
Welsh, MJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (41) :25617-25622
[10]   PHOSPHORYLATION BY CAMP-DEPENDENT PROTEIN-KINASE CAUSES A CONFORMATIONAL CHANGE IN THE R-DOMAIN OF THE CYSTIC-FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR [J].
DULHANTY, AM ;
RIORDAN, JR .
BIOCHEMISTRY, 1994, 33 (13) :4072-4079