Climate feedbacks under a very broad range of forcing

被引:76
作者
Colman, Robert [1 ]
McAvaney, Bryant [2 ]
机构
[1] Ctr Australian Weather & Climate Res, Melbourne, Vic 3000, Australia
[2] Bur Meteorol Res Ctr, Melbourne, Vic 3001, Australia
关键词
CIRCULATION;
D O I
10.1029/2008GL036268
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
An atmospheric general circulation model, coupled to a mixed layer ocean, is subjected to a broad range of forcing away from the current climate between 1/16 to 32 times current CO2 in halving/doubling steps. As climate warms climate sensitivity weakens (although not monotonically), albedo feedback weakens (driving much of the sensitivity weakening), water vapour feedback strengthens (at a rate slightly larger than it would if relative humidity remained unchanged), and lapse rate feedback increases (negatively); this latter change essentially offsetting the water vapour increases. Longwave cloud feedbacks are relatively stable (moderate and positive) across the full range; shortwave cloud feedback remains relatively weak, apart from under the coldest climates. Cloud optical property related components (from total water content, water/ice fraction and cloud thickness) remain remarkably stable. Cloud 'amount' feedbacks show the greatest trends: weakening as temperatures increase. Although cloud feedbacks show an overall consistency of features in different latitudes, precise patterns of changes differ substantially for different baseline climates. Citation: Colman, R., and B. McAvaney (2009), Climate feedbacks under a very broad range of forcing, Geophys. Res. Lett., 36, L01702, doi: 10.1029/2008GL036268.
引用
收藏
页数:5
相关论文
共 22 条
[1]  
[Anonymous], CLIM DYN
[2]   How well do we understand and evaluate climate change feedback processes? [J].
Bony, Sandrine ;
Colman, Robert ;
Kattsov, Vladimir M. ;
Allan, Richard P. ;
Bretherton, Christopher S. ;
Dufresne, Jean-Louis ;
Hall, Alex ;
Hallegatte, Stephane ;
Holland, Marika M. ;
Ingram, William ;
Randall, David A. ;
Soden, Brian J. ;
Tselioudis, George ;
Webb, Mark J. .
JOURNAL OF CLIMATE, 2006, 19 (15) :3445-3482
[3]  
Chou MD, 1998, J CLIMATE, V11, P202, DOI 10.1175/1520-0442(1998)011<0202:PFCOAS>2.0.CO
[4]  
2
[5]   Seasonal contributions to climate feedbacks [J].
Colman, R .
CLIMATE DYNAMICS, 2003, 20 (7-8) :825-841
[6]   Climate feedbacks in a general circulation model incorporating prognostic clouds [J].
Colman, R ;
Fraser, J ;
Rotstayn, L .
CLIMATE DYNAMICS, 2001, 18 (1-2) :103-122
[7]   Non-linear climate feedback analysis in an atmospheric general circulation model [J].
Colman, RA ;
Power, SB ;
McAvaney, BJ .
CLIMATE DYNAMICS, 1997, 13 (10) :717-731
[8]  
Forster P, 2007, AR4 CLIMATE CHANGE 2007: THE PHYSICAL SCIENCE BASIS, P129
[9]   Efficacy of climate forcings [J].
Hansen, J ;
Sato, M ;
Ruedy, R ;
Nazarenko, L ;
Lacis, A ;
Schmidt, GA ;
Russell, G ;
Aleinov, I ;
Bauer, M ;
Bauer, S ;
Bell, N ;
Cairns, B ;
Canuto, V ;
Chandler, M ;
Cheng, Y ;
Del Genio, A ;
Faluvegi, G ;
Fleming, E ;
Friend, A ;
Hall, T ;
Jackman, C ;
Kelley, M ;
Kiang, N ;
Koch, D ;
Lean, J ;
Lerner, J ;
Lo, K ;
Menon, S ;
Miller, R ;
Minnis, P ;
Novakov, T ;
Oinas, V ;
Perlwitz, J ;
Perlwitz, J ;
Rind, D ;
Romanou, A ;
Shindell, D ;
Stone, P ;
Sun, S ;
Tausnev, N ;
Thresher, D ;
Wielicki, B ;
Wong, T ;
Yao, M ;
Zhang, S .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2005, 110 (D18) :1-45
[10]  
Rotstayn LD, 2000, MON WEATHER REV, V128, P1070, DOI 10.1175/1520-0493(2000)128<1070:ASFCOT>2.0.CO