Genetic suppression analysis of non-antibiotic-producing mutants of the Streptomyces coelicolor absA locus

被引:11
作者
Anderson, T [1 ]
Brian, P [1 ]
Riggle, P [1 ]
Kong, RQ [1 ]
Champness, W [1 ]
机构
[1] Michigan State Univ, Dept Microbiol, E Lansing, MI 48824 USA
来源
MICROBIOLOGY-UK | 1999年 / 145卷
关键词
Streptomyces coelicolor; antibiotic biosynthesis and regulation; two-component system; genetic suppression;
D O I
10.1099/00221287-145-9-2343
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The absA locus in Streptomyces coelicolor A3(2) was identified because mutations in it uncoupled sporulation from antibiotic synthesis: absA mutants failed to produce any of the four antibiotics characteristic of S. coelicolor. These mutants are now shown to contain point mutations in the aksA1 gene which encodes the histidine kinase sensor-transmitter protein of a two-component signalling system. The absA1 non-antibiotic-producing mutants, which are unpigmented, spontaneously acquire pigmented colony sectors. Genetic analysis established that the pigmented sectors contain second-site suppressive mutations, sab (for suppressor of abs). Phenotypic characterization showed that sab strains produce all four antibiotics; some overproduce antibiotics and are designated Pha, for precocious hyperproduction of antibiotics. A set of sab mutations responsible for suppression was localized by plasmid-mediated and protoplast fusion mapping techniques to the vicinity of the absA locus. DNA cloned from this region was used to construct phage that could transduce sab mutations. Sequence analysis of sab strains defined sab mutations in both the absA1 gene and the absA2 gene; the latter encodes the two-component system's response regulator.
引用
收藏
页码:2343 / 2353
页数:11
相关论文
共 38 条
[1]   Transcriptional regulation of Streptomyces coelicolor pathway-specific antibiotic regulators by the absA and absB loci [J].
Aceti, DJ ;
Champness, WC .
JOURNAL OF BACTERIOLOGY, 1998, 180 (12) :3100-3106
[2]   MUTATIONS IN A NEW STREPTOMYCES-COELICOLOR LOCUS WHICH GLOBALLY BLOCK ANTIBIOTIC BIOSYNTHESIS BUT NOT SPORULATION [J].
ADAMIDIS, T ;
RIGGLE, P ;
CHAMPNESS, W .
JOURNAL OF BACTERIOLOGY, 1990, 172 (06) :2962-2969
[3]   Structure of the Escherichia coli response regulator NarL [J].
Baikalov, I ;
Schroder, I ;
KaczorGrzeskowiak, M ;
Grzeskowiak, K ;
Gunsalus, RP ;
Dickerson, RE .
BIOCHEMISTRY, 1996, 35 (34) :11053-11061
[4]   The regulation of antibiotic production in Streptomyces coelicolor A3(2) [J].
Bibb, M .
MICROBIOLOGY-SGM, 1996, 142 :1335-1344
[5]   Global negative regulation of Streptomyces coelicolor antibiotic synthesis mediated by an absA-encoded putative signal transduction system [J].
Brian, P ;
Riggle, FJ ;
Santos, RA ;
Champness, WC .
JOURNAL OF BACTERIOLOGY, 1996, 178 (11) :3221-3231
[6]   Production of actinorhodin-related ''blue pigments'' by Streptomyces coelicolor A3(2) [J].
Bystrykh, LV ;
FernandezMoreno, MA ;
Herrema, JK ;
Malpartida, F ;
Hopwood, DA ;
Dijkhuizen, L .
JOURNAL OF BACTERIOLOGY, 1996, 178 (08) :2238-2244
[7]   The ppGpp synthetase gene (relA) of Streptomyces coelicolor A3(2) play's a conditional role in antibiotic production and morphological differentiation [J].
Chakraburtty, R ;
Bibb, M .
JOURNAL OF BACTERIOLOGY, 1997, 179 (18) :5854-5861
[8]  
CHAMPNESS W, 1999, PROKARYOTIC DEV
[9]  
CHAMPNESS W, 1999, MANUAL IND MICROBIOL, P725
[10]   NEW LOCI REQUIRED FOR STREPTOMYCES-COELICOLOR MORPHOLOGICAL AND PHYSIOLOGICAL DIFFERENTIATION [J].
CHAMPNESS, WC .
JOURNAL OF BACTERIOLOGY, 1988, 170 (03) :1168-1174