Electrocatalytic performance of Ni modified MnOX/C composites toward oxygen reduction reaction and their application in Zn-air battery

被引:45
作者
Wu, Qiumei [1 ,2 ]
Jiang, Luhua [1 ]
Qi, Luting [1 ]
Wang, Erdong [1 ]
Sun, Gongquan [1 ]
机构
[1] Chinese Acad Sci, Dalian Inst Chem Phys, Dalian Natl Lab Clean Energy, Dalian 116023, Peoples R China
[2] Cent S Univ, State Key Lab Powder Met, Changsha 410083, Hunan, Peoples R China
关键词
Oxygen reduction reaction; Manganese oxide; Nickel hydroxide; Activity; Zinc-air battery; MANGANESE OXIDE NANOPARTICLES; NITROGEN-DOPED GRAPHENE; PALLADIUM NANOPARTICLES; CARBON ELECTRODES; CATALYSTS; TEMPERATURE; NANOSTRUCTURES; OXIDATION; PLATINUM; MNO2;
D O I
10.1016/j.ijhydene.2013.12.076
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A series of Ni modified MnOx/C composites were synthesized by introducing NaBH4 to MnO2/C aqueous suspension containing Ni(NO3)(2). The physical properties and the activity of the composites toward the oxygen reduction reaction (ORR) were investigated via transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and the electrochemical techniques. The results show that the higher activity of the composites toward the ORR is correlated with the higher content of Mn0OH species transformed from Mn(II) on the surface of the composite. The main nickel species in the composites is Ni(OH)(2), while Ni(OH)(2) shows little activity toward the ORR. However, introducing Ni(OH)2 with proper amount into the MnOx/C improves the distribution of the active material MnOx, which contributes to a surface with more MnOOH. The optimal composite is of the Ni/Mn atomic ratio of 1:2 and the MnOx loading of 28 wt.%. The maximum power density of the zinc-air battery with the optimized Ni modified MnOx/C as the cathode catalyst reaches up to 122 mW cm(-2), much higher than the one with the MnOx/ C as the air cathode catalyst (89 mW cm(-2)), and slightly higher than those with the Pd/C and Pt/C as the cathode catalysts. Crown Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:3423 / 3432
页数:10
相关论文
共 47 条
[1]   Preparation and characterisation of carbon-supported palladium nanoparticles for oxygen reduction in low temperature PEM fuel cells [J].
Alvarez, G. F. ;
Mamlouk, M. ;
Kumar, S. M. Senthil ;
Scott, K. .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2011, 41 (08) :925-937
[2]  
[Anonymous], 2001, ELECTROCHEMICAL METH
[3]   Mn3O4 and γ-MnOOH powders, preparation, phase composition and XPS characterisation [J].
Ardizzone, S ;
Bianchi, CL ;
Tirelli, D .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 1998, 134 (03) :305-312
[4]   A class of non-precious metal composite catalysts for fuel cells [J].
Bashyam, Rajesh ;
Zelenay, Piotr .
NATURE, 2006, 443 (7107) :63-66
[5]   Oxygen reduction reaction on nanosized manganese oxide particles dispersed on carbon in alkaline solutions [J].
Calegaro, M. L. ;
Lima, F. H. B. ;
Ticianelli, E. A. .
JOURNAL OF POWER SOURCES, 2006, 158 (01) :735-739
[6]   The mechanism of oxygen reduction on MnO2-catalyzed air cathode in alkaline solution [J].
Cao, YL ;
Yang, HX ;
Ai, XP ;
Xiao, LF .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2003, 557 :127-134
[7]   Enhancing Electrocatalytic Oxygen Reduction on MnO2 with Vacancies [J].
Cheng, Fangyi ;
Zhang, Tianran ;
Zhang, Yi ;
Du, Jing ;
Han, Xiaopeng ;
Chen, Jun .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (09) :2474-2477
[8]   Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts [J].
Cheng, Fangyi ;
Shen, Jian ;
Peng, Bo ;
Pan, Yuede ;
Tao, Zhanliang ;
Chen, Jun .
NATURE CHEMISTRY, 2011, 3 (01) :79-84
[9]   MnO2-Based Nanostructures as Catalysts for Electrochemical Oxygen Reduction in Alkaline Media [J].
Cheng, Fangyi ;
Su, Yi ;
Liang, Jing ;
Tao, Zhanliang ;
Chen, Jun .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :898-905
[10]   Selective Synthesis of Manganese Oxide Nanostructures for Electrocatalytic Oxygen Reduction [J].
Cheng, Fangyi ;
Shen, Jian ;
Ji, Weiqiang ;
Tao, Zhanliang ;
Chen, Jun .
ACS APPLIED MATERIALS & INTERFACES, 2009, 1 (02) :460-466