Mapping the operation of the DMT Continuous Flow CCN counter

被引:235
作者
Lance, S
Medina, J
Smith, JN
Nenes, A [1 ]
机构
[1] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA
[3] Natl Ctr Atmospher Res, Boulder, CO 80307 USA
基金
美国国家科学基金会; 美国海洋和大气管理局;
关键词
D O I
10.1080/02786820500543290
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
This work thoroughly analyzes a new commercial instrument for measuring Cloud Condensation Nuclei (CCN), the Droplet Measurement Technologies Cylindrical Continuous- Flow Streamwise Thermal Gradient CCN Chamber (CFSTGC). This instrument can measure CCN concentrations at supersaturations from 0.06% to 3% (potentially up to 6%), at a 1 Hz sampling rate that is sufficient for airborne operation. Our analysis employs a fully coupled numerical flow model to simulate the water vapor supersaturation, temperature, velocity profiles and CCN growth in the CFSTGC for its entire range of operation (aerosol sample flow rates 0.25-2.0 Lmin(-1), temperature differences 2-15 K and ambient pressures 100-1000 mb). The model was evaluated by comparing simulated instrument responses for calibration aerosol against actual measurements from an existing CCN instrument. The model was used to evaluate the CCN detection efficiency for a wide range of ambient pressures, flow rates, temperature gradients, and droplet growth kinetics. Simulations overestimate the instrument supersaturation when the thermal resistance across the walls of the flow chamber is not considered. We have developed a methodology to determine the thermal resistance and temperature drop across the wetted walls of the flow chamber, by combining simulations and calibration experiments. Finally, we provide parameterizations for determining the thermal resistance, the instrument supersaturation and the optimal detection threshold for the optical particle counter.
引用
收藏
页码:242 / 254
页数:13
相关论文
共 27 条
[1]   Measurement of the timescale of hygroscopic growth for atmospheric aerosols [J].
Chuang, PY .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D9)
[2]  
Chuang PY, 2000, J ATMOS OCEAN TECH, V17, P1005, DOI 10.1175/1520-0426(2000)017<1005:DOACIF>2.0.CO
[3]  
2
[4]  
Feingold G, 2002, J ATMOS SCI, V59, P2006, DOI 10.1175/1520-0469(2002)059<2006:AOTIOF>2.0.CO
[5]  
2
[6]  
FUKUTA N, 1979, J APPL METEOROL, V18, P1352, DOI 10.1175/1520-0450(1979)018<1352:AHTGCC>2.0.CO
[7]  
2
[8]  
Hindmarsh A. C, 1983, IMACS T SCI COMPUTAT, V1, P55
[9]   SEGMENTED THERMAL-DIFFUSION CHAMBER FOR CONTINUOUS MEASUREMENTS OF CN [J].
HOPPEL, WA ;
TWOMEY, S ;
WOJCIECHOWSKI, TA .
JOURNAL OF AEROSOL SCIENCE, 1979, 10 (04) :369-373
[10]  
HUDSON JG, 1989, J ATMOS OCEAN TECH, V6, P1055, DOI 10.1175/1520-0426(1989)006<1055:AICS>2.0.CO