Non-stationary log-periodogram regression

被引:166
作者
Velasco, C [1 ]
机构
[1] Univ Carlos III Madrid, Dept Estadist & Econometria, Getafe 28903, Madrid, Spain
基金
英国经济与社会研究理事会;
关键词
non-stationary time series; log-periodogram regression; semiparametric inference; tapering;
D O I
10.1016/S0304-4076(98)00080-3
中图分类号
F [经济];
学科分类号
02 ;
摘要
We study asymptotic properties of the log-periodogram semiparametric estimate of the memory parameter d for non-stationary(d greater than or equal to 1/2) time series with Gaussian increments, extending the results of Robinson (1995) for stationary and invertible Gaussian processes. We generalize the definition of the memory parameter d for non-stationary processes in terms of the (successively) differentiated series. We obtain that the log-periodogram estimate is asymptotically normal for d is an element of [1/2, 3/4) and still consistent for d is an element of [1/2, 1). We show that with adequate data tapers, a modified estimate is consistent and asymptotically normal distributed for any d, including both non-stationary and non-invertible processes. The estimates are invariant to the presence of certain deterministic trends, without any need of estimation. (C) 1999 Elsevier Science S.A. All rights reserved.
引用
收藏
页码:325 / 371
页数:47
相关论文
共 22 条
[1]  
AGIAKLOGLOU C, 1993, J TIME SER ANAL, V14, P235
[2]  
Alekseev V, 1996, THEORY PROBABILITY I, V41, P137
[3]  
BLOOMFIELD P, 1991, STAT THEORY MODELLIN, P152
[4]  
Bloomfield Paul., 2014, The Virtues of Happiness: A Theory of the Good Life, DOI DOI 10.1093/ACPROF:OSO/9780199827367.001.0001
[6]   TRENDS VERSUS RANDOM-WALKS IN TIME-SERIES ANALYSIS [J].
DURLAUF, SN ;
PHILLIPS, PCB .
ECONOMETRICA, 1988, 56 (06) :1333-1354
[7]  
Geweke J., 1983, J TIME SER ANAL, V4, P221, DOI DOI 10.1111/J.1467-9892.1983.TB00371.X
[8]  
Giraitis L., 1997, Journal of Time Series Analysis, V18, P49
[9]   TYPICAL SPECTRAL SHAPE OF AN ECONOMIC VARIABLE [J].
GRANGER, CWJ .
ECONOMETRICA, 1966, 34 (01) :150-&
[10]  
Hannan EJ, 1970, MULTIPLE TIME SERIES