Solution processable tungsten polyoxometalate as highly effective cathode interlayer for improved efficiency and stability polymer solar cells

被引:65
作者
Palilis, Leonidas C. [1 ]
Vasilopoulou, Maria [2 ]
Douvas, Antonios M. [2 ]
Georgiadou, Dimitra G. [2 ]
Kennou, Stella [3 ]
Stathopoulos, Nikolaos A. [4 ]
Constantoudis, Vassilios [2 ]
Argitis, Panagiotis [2 ]
机构
[1] Univ Patras, Dept Phys, Patras 26500, Greece
[2] Natl Ctr Sci Res Demokritos, Inst Microelect, Athens 15310, Greece
[3] Univ Patras, Dept Chem Engn, Pan-as 26500, Greece
[4] Technol Educ Inst TEI Piraeus, Dept Elect, Aigaleo 12244, Greece
关键词
Polymer solar cells; Tungsten polyoxometalate (PW12-POM); Electron extraction layer; Optical spacer; Optical simulations; INTERFACIAL LAYER; CONJUGATED POLYELECTROLYTE; TITANIUM-OXIDE; WORK FUNCTION; PERFORMANCE; TRANSPORT; HOLE; ENHANCEMENT; DERIVATIVES; STATES;
D O I
10.1016/j.solmat.2013.02.034
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
We report for the first time the use of a water-soluble, tungsten polyoxometalate H3PW12O40 (PW12-POM) as an efficient cathode interlayer incorporated into poly(3-hexylthiophene):[6,6]-phenyl-C-61-butyric acid methyl ester (P3HT:PCBM-61) polymer solar cells. The short circuit photocurrent density of the PW12-POM modified device is enhanced by similar to 40% the open circuit voltage increases from 0.61 V to 0.65 V and the fill factor from 0.36 to 0.41, resulting to a power conversion efficiency enhancement of similar to 70% (from 1.57% for the reference to 2.7% for the PW12-POM modified device). The improvement is attributed to enhanced electron transfer/extraction at the PW12-POM/Al interface as a result of the favorable interfacial energy level alignment and possible enhancement of the local electric field due to the nanoscale morphology of the PW12-POM layer, as evidenced by AFM measurements. A reduced degradation rate was measured for PW12-POM modified devices stored in dark and measured in ambient conditions. Taking into account the advantageous solution processability of PW12-POM, the large increase in the device efficiency and the improvement of their stability, we manifest that PW12-POM has highly desirable properties in order to be embedded as cathode interlayer in organic photovoltaic cells. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:205 / 213
页数:9
相关论文
共 55 条
[1]   Novel ZnO nanostructured electrodes for higher power conversion efficiencies in polymeric solar cells [J].
Ajuria, Jon ;
Etxebarria, Ikerne ;
Azaceta, Eneko ;
Tena-Zaera, Ramon ;
Fernandez-Montcada, Nuria ;
Palomares, Emilio ;
Pacios, Roberto .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (46) :20871-20876
[2]   An optical spacer is no panacea for light collection in organic solar cells [J].
Andersson, B. Viktor ;
Huang, David M. ;
Moule, Adam J. ;
Inganas, Olle .
APPLIED PHYSICS LETTERS, 2009, 94 (04)
[3]   Application of metal-doped organic layer both as exciton blocker and optical spacer for organic photovoltaic devices [J].
Chan, M. Y. ;
Lai, S. L. ;
Lau, K. M. ;
Lee, C. S. ;
Lee, S. T. .
APPLIED PHYSICS LETTERS, 2006, 89 (16)
[4]   Calcium niobate nanosheets as a novel electron transport material for solution-processed multi-junction polymer solar cells [J].
Chang, Lilian ;
Holmes, Michael A. ;
Waller, Mollie ;
Osterloh, Frank E. ;
Moule, Adam J. .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (38) :20443-20450
[5]   Electrostatic Self-Assembly Conjugated Polyelectrolyte-Surfactant Complex as an Interlayer for High Performance Polymer Solar Cells [J].
Chang, Yi-Ming ;
Zhu, Rui ;
Richard, Eric ;
Chen, Chun-Chao ;
Li, Gang ;
Yang, Yang .
ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (15) :3284-3289
[6]   Combination of Titanium Oxide and a Conjugated Polyelectrolyte for High-Performance Inverted-Type Organic Optoelectronic Devices [J].
Choi, Hyosung ;
Park, Ji Sun ;
Jeong, Eunjae ;
Kim, Gi-Hwan ;
Lee, Bo Ram ;
Kim, Sang Ouk ;
Song, Myoung Hoon ;
Woo, Han Young ;
Kim, Jin Young .
ADVANCED MATERIALS, 2011, 23 (24) :2759-2763
[7]   Polyoxometalate-based layered structures for charge transport control in molecular devices [J].
Douvas, Antonios M. ;
Makarona, Eleni ;
Glezos, Nikos ;
Argitis, Panagicitis ;
Mielczarski, Jerzy A. ;
Mielczarski, Ela .
ACS NANO, 2008, 2 (04) :733-742
[8]   Improved photocurrent by using n-doped 2,3,8,9,14,15-hexachloro-5,6,11,12,17,18-hexaazatrinaphthylene as optical spacer layer in p-i-n type organic solar cells [J].
Falkenberg, Christiane ;
Leo, Karl ;
Riede, Moritz K. .
JOURNAL OF APPLIED PHYSICS, 2011, 110 (12)
[9]   C60:LiF Blocking Layer for Environmentally Stable Bulk Heterojunction Solar Cells [J].
Gao, Dong ;
Helander, Michael G. ;
Wang, Zhi-Bin ;
Puzzo, Danny P. ;
Greiner, Mark T. ;
Lu, Zheng-Hong .
ADVANCED MATERIALS, 2010, 22 (47) :5404-+
[10]   The use of ZnO as optical spacer in polymer solar cells: Theoretical and experimental study [J].
Gilot, Jan ;
Barbu, Ionut ;
Wienk, Martijn M. ;
Janssen, Rene A. J. .
APPLIED PHYSICS LETTERS, 2007, 91 (11)