Parametric hidden Markov models for gesture recognition

被引:308
作者
Wilson, AD
Bobick, AF
机构
[1] MIT, Media Lab, Vis & Modeling Grp, Cambridge, MA 02139 USA
[2] Georgia Inst Technol, Coll Comp, Atlanta, GA 30332 USA
关键词
gesture recognition; hidden Markov models; expectation-maximization algorithm; time-series modeling; computer vision;
D O I
10.1109/34.790429
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A new method for the representation, recognition, and interpretation of parameterized gesture is presented. By parameterized gesture we mean gestures that exhibit a systematic spatial variation; one example is a point gesture where the relevant parameter is the two-dimensional direction. Our approach is to extend the standard hidden Markov model method of gesture recognition by including a global parametric variation in the output probabilities of the HMM states, Using a linear model of dependence, we formulate an expectation-maximization (EM) method for training the parametric HMM. During testing; a similar EM algorithm simultaneously maximizes the output likelihood of the PHMM for the given sequence and estimates the quantifying parameters. Using visually derived and directly measured three-dimensional hand position measurements as input, we present results that demonstrate the recognition superiority of the PHMM over standard HMM techniques, as well as greater robustness in parameter estimation with respect to noise in the input features. Last, we extend the PHMM to handle arbitrary smooth (nonlinear) dependencies. The nonlinear formulation requires the use of a generalized expectation-maximization (GEM) algorithm for both training and the simultaneous recognition of the gesture and estimation of the value of the parameter. We present results on a pointing gesture, where the nonlinear approach permits the natural spherical coordinate parameterization of pointing direction.
引用
收藏
页码:884 / 900
页数:17
相关论文
共 32 条
[1]  
[Anonymous], 1995, P INT WORKSH AUT FAC
[2]  
AZARBAYEJANI A, 1996, P 13 INT C PATT REC
[3]  
Bengio Y., 1995, Advances in Neural Information Processing Systems 7, P427
[4]  
Bishop C. M., 1995, NEURAL NETWORKS PATT
[5]  
BISHOP CM, 1996, ADV NEURAL INFORMATI, V8, P402
[6]  
BOBICK A, 1996, P INT C PATT REC, V1, P307
[7]   A state-based approach to the representation and recognition of gesture [J].
Bobick, AF ;
Wilson, AD .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1997, 19 (12) :1325-1337
[8]  
BREGLER C, 1994, ADV NEURAL INFORMATI, V6, P43
[9]  
BRIEMAN L, 1973, STATISTICS
[10]   Invariant features for 3-D gesture recognition [J].
Campbell, LW ;
Becker, DA ;
Azarbayejani, A ;
Bobick, AF ;
Pentland, A .
PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION, 1996, :157-162