Anaphase initiation in Saccharomyces cerevisiae is controlled by the APC-dependent degradation of the anaphase inhibitor Pds1p

被引:670
作者
CohenFix, O [1 ]
Peters, JM [1 ]
Kirschner, MW [1 ]
Koshland, D [1 ]
机构
[1] HARVARD UNIV,SCH MED,DEPT CELL BIOL,BOSTON,MA 02115
关键词
Pdsl; anaphase promoting complex; Saccharomyces cerevisiae; Xenopus; ubiquitin-dependent proteolysis;
D O I
10.1101/gad.10.24.3081
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Anaphase initiation has been postulated to be controlled through the ubiquitin-dependent proteolysis of an unknown inhibitor. This process involves the anaphase promoting complex (APC), a specific ubiquitin ligase that has been shown to be involved in mitotic cyclin degradation. Previous studies demonstrated that in Saccharomyces cerevisiae, Pds1 protein is an anaphase inhibitor and suggested that it may be an APC target. Here we show that in yeast cells and in mitotic Xenopus extracts Pds1p is degraded in an APC-dependent manner. In addition, Pds1p is directly ubiquitinated by the Xenopus APC. In budding yeast Pds1p is degraded at the time of anaphase initiation and nondegradable derivatives of Pds1p inhibit the onset of anaphase. We conclude that Pds1p is an anaphase inhibitor whose APC-dependent degradation is required for the initiation of anaphase.
引用
收藏
页码:3081 / 3093
页数:13
相关论文
共 45 条
[1]   CLOSING THE CELL-CYCLE CIRCLE IN YEAST - G2 CYCLIN PROTEOLYSIS INITIATED AT MITOSIS PERSISTS UNTIL THE ACTIVATION OF G1 CYCLINS IN THE NEXT CYCLE [J].
AMON, A ;
IRNIGER, S ;
NASMYTH, K .
CELL, 1994, 77 (07) :1037-1050
[2]   ISOLATION AND CHARACTERIZATION OF THE GENE ENCODING YEAST DEBRANCHING ENZYME [J].
CHAPMAN, KB ;
BOEKE, JD .
CELL, 1991, 65 (03) :483-492
[3]   A MULTIUBIQUITIN CHAIN IS CONFINED TO SPECIFIC LYSINE IN A TARGETED SHORT-LIVED PROTEIN [J].
CHAU, V ;
TOBIAS, JW ;
BACHMAIR, A ;
MARRIOTT, D ;
ECKER, DJ ;
GONDA, DK ;
VARSHAVSKY, A .
SCIENCE, 1989, 243 (4898) :1576-1583
[4]   THE UBIQUITIN-PROTEASOME PROTEOLYTIC PATHWAY [J].
CIECHANOVER, A .
CELL, 1994, 79 (01) :13-21
[5]   GENETIC CONTROL OF CELL DIVISION CYCLE IN YEAST .3. 7 GENES CONTROLLING NUCLEAR DIVISION [J].
CULOTTI, J ;
HARTWELL, LH .
EXPERIMENTAL CELL RESEARCH, 1971, 67 (02) :389-&
[6]   Cut2 proteolysis required for sister-chromatid separation in fission yeast [J].
Funabiki, H ;
Yamano, H ;
Kumada, K ;
Nagao, K ;
Hunt, T ;
Yanagida, M .
NATURE, 1996, 381 (6581) :438-441
[7]  
FUNABIKI HD, 1996, IN PRESS EMBO
[8]  
GLOTZER M, 1991, NATURE, V349, P132, DOI 10.1038/349132a0
[9]   CHROMOSOME CONDENSATION AND SISTER-CHROMATID PAIRING IN BUDDING YEAST [J].
GUACCI, V ;
HOGAN, E ;
KOSHLAND, D .
JOURNAL OF CELL BIOLOGY, 1994, 125 (03) :517-530
[10]   CELL-CYCLE CONTROL AND CANCER [J].
HARTWELL, LH ;
KASTAN, MB .
SCIENCE, 1994, 266 (5192) :1821-1828