Strategies toward predicting peptide cellular permeability from computed molecular descriptors

被引:29
作者
Goodwin, JT [1 ]
Mao, B
Vidmar, TJ
Conradi, RA
Burton, PS
机构
[1] Pharmacia & Upjohn Inc, Drug Absorpt & Transport, Kalamazoo, MI 49007 USA
[2] Pharmacia & Upjohn Inc, Comp Aided Drug Discovery, Kalamazoo, MI 49007 USA
[3] Pharmacia & Upjohn Inc, Clin & Res Biostat, Kalamazoo, MI 49007 USA
来源
JOURNAL OF PEPTIDE RESEARCH | 1999年 / 53卷 / 04期
关键词
cellular permeability; computed surface areas; hydrogen-bond potential; lipophilicity;
D O I
10.1034/j.1399-3011.1999.00072.x
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The therapeutic efficacy of an orally administered drug is dictated not only by its pharmacological properties such as potency and selectivity, but also its pharmacokinetic properties such as its access to the site of activity. Thorough evaluation of the physicochemical and biological barriers to drug delivery is essential to the selection and successful development of drug candidates. We have demonstrated previously that cellular permeability, as a primary component of drug delivery, is principally dependent upon the desolvation potential of the polar functionalities in the molecule and, secondarily, upon the solute lipophilicity [Conradi, R.A., Hilgers, A.R., Ho, N.F.H., Burton, P.S. (1992) The influence of peptide structure on transport across Caco-2 cells. II. Peptide bond modification which results in improved permeability. Pharm. Res. 9, 473-479]. Increasingly sophisticated computational methods are becoming available for describing molecular structural features proposed to correlate with such molecular physicochemical determinants of permeability. Herein we examine the relationships of various computationally derived molecular geometric descriptors for a set of peptides and peptidomimetics, in the context of experimentally measured hydrogen-bond potentials and lipophilicities, with their cellular permeabilities. These descriptors include molecular volume, polar and non-polar surface areas and projected molecular cross-sectional areas. Particular attention is paid to the roles of solvation treatments and other computational factors in descriptor generation, deconvolution of cellular transport mechanisms and statistical analyses of the resulting data for the development of valid, structure-based and mechanistically meaningful models of cellular permeability. No significant correlation of cellular permeability with computed descriptors was found. This was primarily because of our inability to identify surrogates for hydrogen-bond desolvation potential for the solutes from among these descriptors.
引用
收藏
页码:355 / 369
页数:15
相关论文
共 78 条
[1]  
ABRAHAM MH, 1996, LIPOPHILICITY DRUG A, P311
[2]   PASSIVE DIFFUSION OF WEAK ORGANIC ELECTROLYTES ACROSS CACO-2 CELL MONOLAYERS - UNCOUPLING THE CONTRIBUTIONS OF HYDRODYNAMIC, TRANSCELLULAR, AND PARACELLULAR BARRIERS [J].
ADSON, A ;
BURTON, PS ;
RAUB, TJ ;
BARSUHN, CL ;
AUDUS, KL ;
HO, NFH .
JOURNAL OF PHARMACEUTICAL SCIENCES, 1995, 84 (10) :1197-1204
[3]   QUANTITATIVE APPROACHES TO DELINEATE PARACELLULAR DIFFUSION IN CULTURED EPITHELIAL-CELL MONOLAYERS [J].
ADSON, A ;
RAUB, TJ ;
BURTON, PS ;
BARSUHN, CL ;
HILGERS, AR ;
AUDUS, KL ;
HO, NFH .
JOURNAL OF PHARMACEUTICAL SCIENCES, 1994, 83 (11) :1529-1536
[4]   SOLUBILITY OF NONELECTROLYTES IN POLAR-SOLVENTS .5. ESTIMATION OF SOLUBILITY OF ALIPHATIC MONOFUNCTIONAL COMPOUNDS IN WATER USING A MOLECULAR SURFACE-AREA APPROACH [J].
AMIDON, GL ;
YALKOWSKY, SH ;
ANIK, ST ;
VALVANI, SC .
JOURNAL OF PHYSICAL CHEMISTRY, 1975, 79 (21) :2239-2246
[5]  
[Anonymous], LIPOPHILICITY DRUG A
[6]  
[Anonymous], 1989, SAS STAT US GUID VER
[7]   CORRELATION BETWEEN ORAL-DRUG ABSORPTION IN HUMANS AND APPARENT DRUG PERMEABILITY COEFFICIENTS IN HUMAN INTESTINAL EPITHELIAL (CACO-2) CELLS [J].
ARTURSSON, P ;
KARLSSON, J .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1991, 175 (03) :880-885
[8]   SOLUTE DIFFUSION IN LIPID BILAYER-MEMBRANES - AN ATOMIC-LEVEL STUDY BY MOLECULAR-DYNAMICS SIMULATION [J].
BASSOLINOKLIMAS, D ;
ALPER, HE ;
STOUCH, TR .
BIOCHEMISTRY, 1993, 32 (47) :12624-12637
[9]   Free energy of amide hydrogen bond formation in vacuum, in water, and in liquid alkane solution [J].
BenTal, N ;
Sitkoff, D ;
Topol, IA ;
Yang, AS ;
Burt, SK ;
Honig, B .
JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (03) :450-457
[10]   DEFINITION AND DISPLAY OF STERIC, HYDROPHOBIC, AND HYDROGEN-BONDING PROPERTIES OF LIGAND-BINDING SITES IN PROTEINS USING LEE AND RICHARDS ACCESSIBLE SURFACE - VALIDATION OF A HIGH-RESOLUTION GRAPHICAL TOOL FOR DRUG DESIGN [J].
BOHACEK, RS ;
MCMARTIN, C .
JOURNAL OF MEDICINAL CHEMISTRY, 1992, 35 (10) :1671-1684