Hamiltonian embedding of the self-dual model and equivalence with Maxwell-Chern-Simons theory

被引:31
作者
Banerjee, R [1 ]
Rothe, HJ [1 ]
Rothe, KD [1 ]
机构
[1] UNIV HEIDELBERG,INST THEORET PHYS,D-69120 HEIDELBERG,GERMANY
来源
PHYSICAL REVIEW D | 1997年 / 55卷 / 10期
关键词
D O I
10.1103/PhysRevD.55.6339
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Following systematically the generalized Hamiltonian approach of Batalin and Fradkin, we demonstrate the equivalence of a self-dual model with the Maxwell-Chern-Simons theory by embedding the former second-class theory into a first-class theory.
引用
收藏
页码:6339 / 6343
页数:5
相关论文
共 16 条
[1]   ON THE BFT-BFV QUANTIZATION OF GAUGE-INVARIANT SYSTEMS WITH LINEAR 2ND-CLASS CONSTRAINTS [J].
AMORIM, R .
ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1995, 67 (04) :695-700
[2]   BOSONIZATION IN 3-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BANERJEE, R .
PHYSICS LETTERS B, 1995, 358 (3-4) :297-302
[3]   Duality and bosonisation in arbitrary dimensions [J].
Banerjee, R .
NUCLEAR PHYSICS B, 1996, 465 (1-2) :157-174
[4]   BATALIN-FRADKIN-TYUTIN EMBEDDING OF A SELF-DUAL MODEL AND THE MAXWELL-CHERN-SIMONS THEORY [J].
BANERJEE, R ;
ROTHE, HJ .
NUCLEAR PHYSICS B, 1995, 447 (01) :183-191
[5]   EQUIVALENCE OF THE MAXWELL-CHERN-SIMONS THEORY AND A SELF-DUAL MODEL [J].
BANERJEE, R ;
ROTHE, HJ ;
ROTHE, KD .
PHYSICAL REVIEW D, 1995, 52 (06) :3750-3752
[6]   EXISTENCE THEOREM FOR THE EFFECTIVE GAUGE ALGEBRA IN THE GENERALIZED CANONICAL FORMALISM WITH ABELIAN CONVERSION OF 2ND-CLASS CONSTRAINTS [J].
BATALIN, IA ;
TYUTIN, IV .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1991, 6 (18) :3255-3282
[7]   OPERATORIAL QUANTIZATION OF DYNAMIC-SYSTEMS SUBJECT TO 2ND CLASS CONSTRAINTS [J].
BATALIN, IA ;
FRADKIN, ES .
NUCLEAR PHYSICS B, 1987, 279 (3-4) :514-528
[8]   SELF-DUALITY OF TOPOLOGICALLY MASSIVE GAUGE-THEORIES [J].
DESER, S ;
JACKIW, R .
PHYSICS LETTERS B, 1984, 139 (5-6) :371-373
[9]   TOPOLOGICALLY MASSIVE GAUGE-THEORIES [J].
DESER, S ;
JACKIW, R ;
TEMPLETON, S .
ANNALS OF PHYSICS, 1982, 140 (02) :372-411
[10]  
Dirac P. A. M., 1964, LECT QUANTUM MECH