Nonlinear Fisher discriminant analysis using a minimum squared error cost function and the orthogonal least squares algorithm

被引:95
作者
Billings, SA [1 ]
Lee, KL [1 ]
机构
[1] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield S1 3JD, S Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
pattern classification; Fisher discriminant; orthogonal least squares algorithm; squared error cost function; nonlinear kernel functions; parsimonious; Kernel Fisher Discriminant;
D O I
10.1016/S0893-6080(01)00142-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The nonlinear discriminant function obtained using a minimum squared error cost function can be shown to be directly related to the nonlinear Fisher discriminant (NFD). With the squared error cost function, the orthogonal least squares (OLS) algorithm can be used to find a parsimonious description of the nonlinear discriminant function. Two simple classification techniques will be introduced and tested on a number of real and artificial data sets. The results show that the new classification technique can often perform favourably compared with other state of the art classification techniques. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:263 / 270
页数:8
相关论文
共 20 条
[1]   A tutorial on Support Vector Machines for pattern recognition [J].
Burges, CJC .
DATA MINING AND KNOWLEDGE DISCOVERY, 1998, 2 (02) :121-167
[2]   ORTHOGONAL LEAST-SQUARES METHODS AND THEIR APPLICATION TO NON-LINEAR SYSTEM-IDENTIFICATION [J].
CHEN, S ;
BILLINGS, SA ;
LUO, W .
INTERNATIONAL JOURNAL OF CONTROL, 1989, 50 (05) :1873-1896
[3]   Regularized orthogonal least squares algorithm for constructing radial basis function networks [J].
Chen, S ;
Chng, ES ;
Alkadhimi, K .
INTERNATIONAL JOURNAL OF CONTROL, 1996, 64 (05) :829-837
[4]   ORTHOGONAL LEAST-SQUARES LEARNING ALGORITHM FOR RADIAL BASIS FUNCTION NETWORKS [J].
CHEN, S ;
COWAN, CFN ;
GRANT, PM .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1991, 2 (02) :302-309
[5]   On-line supervised adaptive training using radial basis function networks [J].
Fung, CF ;
Billings, SA ;
Luo, W .
NEURAL NETWORKS, 1996, 9 (09) :1597-1617
[6]   Selecting radial basis function network centers with recursive orthogonal least squares training [J].
Gomm, JB ;
Yu, DL .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2000, 11 (02) :306-314
[7]  
Hart P.E., 1973, Pattern recognition and scene analysis
[8]  
LANG KJ, 1988, P 1988 CONN SUMM SCH
[9]   ADAPTIVE MODEL SELECTION AND ESTIMATION FOR NONLINEAR-SYSTEMS USING A SLIDING DATA WINDOW [J].
LUO, W ;
BILLINGS, SA .
SIGNAL PROCESSING, 1995, 46 (02) :179-202
[10]  
Luo W, 1998, INT J ADAPT CONTROL, V12, P325, DOI 10.1002/(SICI)1099-1115(199806)12:4<325::AID-ACS492>3.0.CO