Direct numerical simulations of passive scalars with Pr>1 advected by turbulent flow

被引:90
作者
Bogucki, D [1 ]
Domaradzki, JA [1 ]
Yeung, PK [1 ]
机构
[1] GEORGIA INST TECHNOL,SCH AEROSP ENGN,ATLANTA,GA 30332
关键词
D O I
10.1017/S0022112097005727
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Direct numerical simulations of passive scalars, with Prandtl numbers Pr = 3, 5, and 7, advected by turbulence at three low Reynolds numbers were performed. The energy spectra are self-similar under the Kolmogorov scaling and exhibit behaviour consistent with many other investigations: a short inertial range for the highest Reynolds number and the universal exponential form of the spectrum for all Reynolds numbers in the dissipation range. In all cases the passive scalar spectra collapse to a single selfsimilar curve under the Batchelor scaling and exhibit the k(-1) range followed by an exponential fall-off. We attribute the applicability of the Batchelor scaling to our low-Reynolds-number flows to the universality of the energy dissipation spectra. The Batchelor range is observed for wavenumbers in general agreement with experimental observations but smaller than predicted by the classical estimates. The discrepancy is caused by the fact that the velocity scales responsible for the generation of the Batchelor range are in the vicinity of the wavenumber of the maximum energy dissipation, which is one order of magnitude less than the Kolmogorov wavenumber used in the classical theory. Two different functional forms of passive scalar spectra proposed by Batchelor and Kraichnan were fitted to the simulation results and it was found that the Kraichnan model agrees very well with the data while the Batchelor formula displays systematic deviations from the data. Implications of these differences for the experimental procedures to measure the energy and passive scalar dissipation rates in oceanographic hows are discussed.
引用
收藏
页码:111 / 130
页数:20
相关论文
共 47 条
[1]  
[Anonymous], 1973, THESIS U CALIFORNIA
[2]  
ANTONSEN TM, 1995, PHYS REV LETT, V75, P1751, DOI 10.1103/PhysRevLett.75.1751
[3]   SMALL-SCALE VARIATION OF CONVECTED QUANTITIES LIKE TEMPERATURE IN TURBULENT FLUID .2. THE CASE OF LARGE CONDUCTIVITY [J].
BATCHELOR, GK ;
HOWELLS, ID ;
TOWNSEND, AA .
JOURNAL OF FLUID MECHANICS, 1959, 5 (01) :134-139
[5]   THE SCALING OF VERTICAL TEMPERATURE-GRADIENT SPECTRA [J].
CALDWELL, DR ;
DILLON, TM ;
BRUBAKER, JM ;
NEWBERGER, PA ;
PAULSON, CA .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1980, 85 (NC4) :1917-1924
[6]   TURBULENCE SPECTRUM OF A PASSIVE TEMPERATURE-FIELD - RESULTS OF A NUMERICAL-SIMULATION [J].
CHASNOV, J ;
CANUTO, VM ;
ROGALLO, RS .
PHYSICS OF FLUIDS, 1988, 31 (08) :2065-2067
[7]   FAR-DISSIPATION RANGE OF TURBULENCE [J].
CHEN, SY ;
DOOLEN, G ;
HERRING, JR ;
KRAICHNAN, RH ;
ORSZAG, SA ;
SHE, ZS .
PHYSICAL REVIEW LETTERS, 1993, 70 (20) :3051-3054
[9]   FURTHER GENERALIZATION OF ONSAGER CASCADE MODEL FOR TURBULENT SPECTRA [J].
CORRSIN, S .
PHYSICS OF FLUIDS, 1964, 7 (08) :1156-1159
[10]   THE BATCHELOR SPECTRUM AND DISSIPATION IN THE UPPER OCEAN [J].
DILLON, TM ;
CALDWELL, DR .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1980, 85 (NC4) :1910-1916