On domain knowledge and feature selection using a support vector machine

被引:64
作者
Barzilay, O [1 ]
Brailovsky, VL [1 ]
机构
[1] Tel Aviv Univ, Dept Comp Sci, IL-69978 Tel Aviv, Israel
关键词
domain knowledge; feature selection; support vector machine; texture recognition;
D O I
10.1016/S0167-8655(99)00014-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The basic principles of a support vector machine (SVM) are analyzed. The problem of feature selection while using an SVM is specifically addressed. An approach to constructing a kernel function which takes into account some domain knowledge about a problem and thus essentially diminishes the number of noisy parameters in high dimensional feature space is suggested. Its application to Texture Recognition is described. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:475 / 484
页数:10
相关论文
共 10 条
[1]  
ANDERSON C, 1958, INTRO MULTIVARIATE S, pCH3
[2]  
[Anonymous], 1982, ESTIMATION DEPENDENC
[3]  
Bradley P. S., 1998, Machine Learning. Proceedings of the Fifteenth International Conference (ICML'98), P82
[4]  
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
[5]  
DUBES RC, 1989, J APPL STAT, V16
[6]   REGULARIZED DISCRIMINANT-ANALYSIS [J].
FRIEDMAN, JH .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1989, 84 (405) :165-175
[7]  
GUYON I, 1992, P 5 ANN WORKSH COMP, P144
[8]  
Hart P.E., 1973, Pattern recognition and scene analysis
[9]  
SCHOLKOPH B, 1997, NIPS 97
[10]  
Vapnik V, 1999, NATURE STAT LEARNING