Semiparametric estimation of a proportional hazard model with unobserved heterogeneity

被引:53
作者
Horowitz, JL [1 ]
机构
[1] Univ Iowa, Dept Econ, Iowa City, IA 52242 USA
关键词
duration analysis; frailty; transformation model;
D O I
10.1111/1468-0262.00068
中图分类号
F [经济];
学科分类号
02 ;
摘要
The proportional hazard model with unobserved heterogeneity gives the hazard function of a random variable conditional on covariates and a second random variable representing unobserved heterogeneity. This paper shows how to estimate the baseline hazard function and the distribution of the unobserved heterogeneity nonparametrically. The baseline hazard function and heterogeneity distribution are assumed to satisfy smoothness conditions but are not assumed to belong to known, finite-dimensional, parametric families. Existing estimators assume that the baseline hazard function or heterogeneity distribution belongs to a known parametric family. Thus, the estimators presented here are more general than existing ones.
引用
收藏
页码:1001 / 1028
页数:28
相关论文
共 35 条
[1]  
Bierens H. J., 1987, ADV ECONOMETRICS, V1, P99
[2]   OPTIMAL RATES OF CONVERGENCE FOR DECONVOLVING A DENSITY [J].
CARROLL, RJ ;
HALL, P .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1988, 83 (404) :1184-1186
[3]  
COX DR, 1972, J R STAT SOC B, V34, P187
[4]  
DABROWSKA DM, 1987, SCAND J STAT, V14, P181
[5]   UNIFORM CONSISTENCY OF THE KERNEL CONDITIONAL KAPLAN-MEIER ESTIMATE [J].
DABROWSKA, DM .
ANNALS OF STATISTICS, 1989, 17 (03) :1157-1167
[6]   TRUE AND SPURIOUS DURATION DEPENDENCE - THE IDENTIFIABILITY OF THE PROPORTIONAL HAZARD MODEL [J].
ELBERS, C ;
RIDDER, G .
REVIEW OF ECONOMIC STUDIES, 1982, 49 (03) :403-409
[7]   ON THE OPTIMAL RATES OF CONVERGENCE FOR NONPARAMETRIC DECONVOLUTION PROBLEMS [J].
FAN, JQ .
ANNALS OF STATISTICS, 1991, 19 (03) :1257-1272
[8]   Semiparametric estimation of a censored regression model with an unknown transformation of the dependent variable [J].
Gorgens, T ;
Horowitz, JL .
JOURNAL OF ECONOMETRICS, 1999, 90 (02) :155-191
[10]   A NOTE ON JACKKNIFING KERNEL REGRESSION FUNCTION ESTIMATORS [J].
HARDLE, W .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1986, 32 (02) :298-300