Shear stress-induced endothelial cell migration involves integrin signaling via the fibronectin receptor subunits α5 and β1

被引:109
作者
Urbich, C [1 ]
Dernbach, E [1 ]
Reissner, A [1 ]
Vasa, M [1 ]
Zeiher, AM [1 ]
Dimmeler, S [1 ]
机构
[1] Goethe Univ Frankfurt, Dept Internal Med 4, D-60590 Frankfurt, Germany
关键词
integrins; migration; shear stress; endothelial cells; fibronectin receptor;
D O I
10.1161/hq0102.101518
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Endothelial cell (EC) migration is required for angiogenesis, neovascularization, and reendothelialization. Integrins, known as alphabeta-heterodimeric cell-surface receptors, regulate cell migration and are essential for mechano-transduction of hemodynamic forces. Therefore, we investigated the effect of shear stress on EC migration and the contribution of the integrins and integrin-dependent signaling pathways in a scratched-wound assay. Laminar shear stress-induced EC migration was significantly reduced by integrin-receptor blocking with RGD peptides or with neutralizing antibodies against integrin subunits alpha(5) and beta(1), whereas antibodies against alpha(v)beta(3) or alpha(2)beta(1), had no effect. Cell-surface levels of the integrin alpha(5) and beta(1) were specifically upregulated in migrating ECs at the wound edges. Consistent with the important role of integrins for shear stress-increased cell migration, blockade of the integrin-associated adapter protein Shc by overexpression of dominant negative construct inhibited shear stress-stimulated EC migration. Moreover, pharmacological inhibition of the integrin downstream effector signaling molecules ERK1/2 or phosphatidyl-inositol-3-kinase prevented shear stress-induced EC migration. In contrast, inhibition of the NO synthase had no effect. Taken together, our results indicate that laminar shear stress enhances EC migration via the fibronectin receptor subunits alpha(5) and beta(1), which serve as central mechanotransducers in ECs. Shear stress-induced enhancement of EC migration might contribute importantly to accelerated reendothelialization of denuded arteries.
引用
收藏
页码:69 / 75
页数:7
相关论文
共 53 条
[1]   Shear stress enhances human endothelial cell wound closure in vitro [J].
Albuquerque, MLC ;
Waters, CM ;
Savla, U ;
Schnaper, HW ;
Flozak, AS .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2000, 279 (01) :H293-H302
[2]   Intracellular pH and tyrosine phosphorylation but not calcium determine shear stress-induced nitric oxide production in native endothelial cells [J].
Ayajiki, K ;
Kindermann, M ;
Hecker, M ;
Fleming, I ;
Busse, R .
CIRCULATION RESEARCH, 1996, 78 (05) :750-758
[3]   Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all αv integrins [J].
Bader, BL ;
Rayburn, H ;
Crowley, D ;
Hynes, RO .
CELL, 1998, 95 (04) :507-519
[4]   Distinct roles of the adaptor protein Shc and focal adhesion kinase in integrin signaling to ERK [J].
Barberis, L ;
Wary, KK ;
Fiucci, G ;
Liu, F ;
Hirsch, E ;
Brancaccio, M ;
Altruda, F ;
Tarone, G ;
Giancotti, FG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (47) :36532-36540
[5]   Extracellular matrix and integrin signalling: the shape of things to come [J].
Boudreau, J ;
Jones, PL .
BIOCHEMICAL JOURNAL, 1999, 339 :481-488
[6]   Induction of the angiogenic phenotype by Hox D3 [J].
Boudreau, N ;
Andrews, C ;
Srebrow, A ;
Ravanpay, A ;
Cheresh, DA .
JOURNAL OF CELL BIOLOGY, 1997, 139 (01) :257-264
[7]   PROTEIN-KINASE-B (C-AKT) IN PHOSPHATIDYLINOSITOL-3-OH INASE SIGNAL-TRANSDUCTION [J].
BURGERING, BMT ;
COFFER, PJ .
NATURE, 1995, 376 (6541) :599-602
[8]  
CALDERWOOD DA, 2000, J BIOL CHEM
[9]   Catalytic activation of the phosphatase MKP-3 by ERK2 mitogen-activated protein kinase [J].
Camps, M ;
Nichols, A ;
Gillieron, C ;
Antonsson, B ;
Muda, M ;
Chabert, C ;
Boschert, U ;
Arkinstall, S .
SCIENCE, 1998, 280 (5367) :1262-1265
[10]  
Chavakis E, 2001, CIRCULATION, V103, P2102