Fractional vector calculus for fractional advection-dispersion

被引:145
作者
Meerschaert, Mark M. [1 ]
Mortensen, Jeff
Wheatcraft, Stephen W.
机构
[1] Univ Otago, Dept Math & Stat, Dunedin 9001, New Zealand
[2] Univ Nevada, Dept Math & Stat, Reno, NV 89557 USA
[3] Univ Nevada, Dept Geol Sci, Reno, NV 89557 USA
基金
美国国家科学基金会;
关键词
functional derivatives; advection-dispersion equation; porous media flow; transport;
D O I
10.1016/j.physa.2005.11.015
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop the basic tools of fractional vector calculus including a fractional derivative version of the gradient, divergence, and curl, and a fractional divergence theorem and Stokes theorem. These basic tools are then applied to provide a physical explanation for the fractional advection-dispersion equation for flow in heterogeneous porous media. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:181 / 190
页数:10
相关论文
共 46 条
[1]  
[Anonymous], 2002, FRACT CALC APPL ANAL
[2]  
ARENDT W, 2001, MONOGRAPHYS MATH
[3]   Subordinated advection-dispersion equation for contaminant transport [J].
Baeumer, B ;
Benson, DA ;
Meerschaert, MM ;
Wheatcraft, SW .
WATER RESOURCES RESEARCH, 2001, 37 (06) :1543-1550
[4]   From continuous time random walks to the fractional Fokker-Planck equation [J].
Barkai, E ;
Metzler, R ;
Klafter, J .
PHYSICAL REVIEW E, 2000, 61 (01) :132-138
[5]   Fractional Fokker-Planck equation, solution, and application [J].
Barkai, E .
PHYSICAL REVIEW E, 2001, 63 (04)
[6]  
Bear J., 1972, Dynamics of Fluids in Porous Media
[7]   The fractional-order governing equation of Levy motion [J].
Benson, DA ;
Wheatcraft, SW ;
Meerschaert, MM .
WATER RESOURCES RESEARCH, 2000, 36 (06) :1413-1423
[8]   Application of a fractional advection-dispersion equation [J].
Benson, DA ;
Wheatcraft, SW ;
Meerschaert, MM .
WATER RESOURCES RESEARCH, 2000, 36 (06) :1403-1412
[9]   Fractional dispersion, Levy motion, and the MADE tracer tests [J].
Benson, DA ;
Schumer, R ;
Meerschaert, MM ;
Wheatcraft, SW .
TRANSPORT IN POROUS MEDIA, 2001, 42 (1-2) :211-240
[10]   Physical pictures of transport in heterogeneous media: Advection-dispersion, random-walk, and fractional derivative formulations [J].
Berkowitz, B ;
Klafter, J ;
Metzler, R ;
Scher, H .
WATER RESOURCES RESEARCH, 2002, 38 (10)