Propionyl-L-carnitine prevents renal function deterioration due to ischema/reperfusion

被引:53
作者
Mister, M
Noris, M
Szymczuk, J
Azzollini, N
Aiello, S
Abbate, M
Trochimowicz, L
Gagliardini, E
Arduini, A
Perico, N
Remuzzi, G
机构
[1] Mario Negri Inst Pharmacol Res, Dept Immunol, I-24125 Bergamo, Italy
[2] Mario Negri Inst Pharmacol Res, Clin Organ Transplantat, I-24125 Bergamo, Italy
[3] Mario Negri Inst Pharmacol Res, Clin Organ Transplantat, Sigma Tau, Italy
[4] Mario Negri Inst Pharmacol Res, Clin Organ Transplantat, Pomezia, Italy
[5] Mario Negri Inst Pharmacol Res, Clin Organ Transplantat, Rome, Italy
关键词
acute renal failure; ischemia/reperfusion injury; isolated perfused rat kidney; delayed graft function; kidney transplant; cold organ storage;
D O I
10.1046/j.1523-1755.2002.00212.x
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Background. Ischemia-reperfusion injury after organ transplantation is a major cause of delayed graft function. Prevention of post-transplant ischemia acute renal failure is still elusive. Methods. The present study was designed to examine whether propionyl-L-carnitine, an acyl derivative of carnitine involved in fatty acid oxidation pathway and adenosine 5'-triphosphate (ATP) generation of mitochondria, prevented renal function deterioration and structural injury induced by ischemia-reperfusion in an ex vivo rat model of isolated perfused kidney (IPK) preparation and in vivo in a model of syngeneic kidney transplantation. Results. In the model of ischemia (20 or 40 min)/reperfusion (90 or 70 min) in IPK, untreated kidneys showed a marked reduction of glomerular filtration rate (GFR) and renal perfusate flow (RPF) as compared to baseline, when perfusion was established by restoring effective perfusion pressure to 100 mm Hg. Exposure of kidneys to propionyl-L-carnitine before establishing the ischemia insult to tissue, largely prevented renal function impairment. Pre-exposure of ischemic kidneys to propionyl-L-carnitine largely reduced the percent of lactate dehydrogenase (LDH), a cell injury mark-or, released into the perfusate after reperfusion as compared to untreated ischemic kidneys. Histologic findings showed very mild post-ischemic lesions in kidneys exposed to propionyl-L-carnitine as compared to untreated ischemic kidneys. Immunohistochemical detection of 4-hydroxynonenal protein adduct, a major product of lipid peroxidation, was very low in kidney infused with propionyl-L-carnitine and exposed to ischemia/reperfusion as compared to untreated ischemic kidneys. ATP levels were not affected by propionyl-L-carnitine treatment. Renal function of kidneys exposed for four hours to cold Belzer UW solution added with propionyl-L-carnitine and transplanted to binephrectomized recipients was largely preserved as compared to untreated ischemic grafts. Propionyl-L-carnitine almost completely prevented polymorphonuclear cell graft infiltration and reduced tubular injury at 16 hours post-transplant. Conclusions. These data indicate that propionyl-L-carnitine is of value in preventing decline of renal function that occurs during ischemia-reperfusion. The beneficial effect of propionyl-L-carnitine possibly relates to lowering lipid peroxidation and free radical generation that eventually results in the preservation of tubular cell structure, The efficacy of propionyl-L-carnitine to modulate ischemia-reperfusion injury in these models opens new perspectives for preventing post-transplant delayed graft function.
引用
收藏
页码:1064 / 1078
页数:15
相关论文
共 68 条
[1]   Renal and systemic nitric oxide synthesis in rats with renal mass reduction [J].
Aiello, S ;
Noris, M ;
Todeschini, M ;
Zappella, S ;
Foglieni, C ;
Benigni, A ;
Corna, D ;
Zoja, C ;
Cavallotti, D ;
Remuzzi, G .
KIDNEY INTERNATIONAL, 1997, 52 (01) :171-181
[2]   EFFECTS OF L-CARNITINE AND ITS ACETATE AND PROPIONATE ESTERS ON THE MOLECULAR-DYNAMICS OF HUMAN ERYTHROCYTE-MEMBRANE [J].
ARDUINI, A ;
GORBUNOV, N ;
ARRIGONIMARTELLI, E ;
DOTTORI, S ;
MOLAJONI, F ;
RUSSO, F ;
FEDERICI, G .
BIOCHIMICA ET BIOPHYSICA ACTA, 1993, 1146 (02) :229-235
[3]  
ARDUINI A, 1995, MOL CELL BIOCHEM, V152, P31
[4]  
BELZER FO, 1993, TRANSPLANT P, V25, P2527
[5]   IDENTIFICATION OF 4-HYDROXYNONEAL AS A CYTO-TOXIC PRODUCT ORIGINATING FROM THE PEROXIDATION OF LIVER MICROSOMAL LIPIDS [J].
BENEDETTI, A ;
COMPORTI, M ;
ESTERBAUER, H .
BIOCHIMICA ET BIOPHYSICA ACTA, 1980, 620 (02) :281-296
[6]   DETECTION OF 4-HYDROXYNONENAL AND OTHER LIPID-PEROXIDATION PRODUCTS IN THE LIVER OF BROMOBENZENE-POISONED MICE [J].
BENEDETTI, A ;
POMPELLA, A ;
FULCERI, R ;
ROMANI, A ;
COMPORTI, M .
BIOCHIMICA ET BIOPHYSICA ACTA, 1986, 876 (03) :658-666
[7]   ENDOTHELIAL-LEUKOCYTE ADHESION MOLECULES IN HUMAN-DISEASE [J].
BEVILACQUA, MP ;
NELSON, RM ;
MANNORI, G ;
CECCONI, O .
ANNUAL REVIEW OF MEDICINE, 1994, 45 :361-378
[8]  
BONSNES RW, 1945, J BIOL CHEM, V158, P581
[9]  
Bonventre J V, 1996, Curr Opin Nephrol Hypertens, V5, P254, DOI 10.1097/00041552-199605000-00011
[10]   MECHANISMS OF ISCHEMIC ACUTE-RENAL-FAILURE [J].
BONVENTRE, JV .
KIDNEY INTERNATIONAL, 1993, 43 (05) :1160-1178