Alternate State Variables for Emerging Nanoelectronic Devices

被引:22
作者
Galatsis, Kosmas [1 ]
Khitun, Alex [1 ]
Ostroumov, Roman [1 ]
Wang, Kang L. [1 ]
Dichtel, William R. [2 ]
Plummer, Edward [3 ]
Stoddart, J. Fraser [4 ]
Zink, Jeffrey I. [3 ]
Lee, Jae Young [5 ]
Xie, Ya-Hong [5 ]
Kim, Ki Wook [6 ]
机构
[1] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
[2] Cornell Univ, Dept Chem & Biol Chem, Ithaca, NY 14953 USA
[3] Univ Calif Los Angeles, Dept Chem & Biol Chem, Los Angeles, CA 90095 USA
[4] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[5] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
[6] N Carolina State Univ, Dept Elect & Comp Engn, Raleigh, NC 27695 USA
关键词
Logic; memory; molecular electronics; nanodevices; nanoelectronics; nanotechnology; spintronics; state variable; MOLECULAR ELECTRONICS; HEAT-GENERATION; SPIN DETECTION; ENERGY; DISSIPATION; DIRECTIONS; TRANSISTOR; NANOSCALE; RESONANCE; PHYSICS;
D O I
10.1109/TNANO.2008.2005525
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We provide an outlook of some important state variables for emerging nanoelectronic devices. State variables are physical representations of information used to perform information processing via memory and logic functionality. Advances in material science, emerging nanodevices, nanostructures, and architectures have provided hope that alternative state variables based on new mechanisms, nanomaterials, and natiodevices may indeed be plausible. We review and analyze the computational advantages that alternate state variables may possibly attain with respect to maximizing computational performance via minimum energy dissipation, maximum operating switching speed, and maximum device density.
引用
收藏
页码:66 / 75
页数:10
相关论文
共 69 条
[1]   Magnetic domain-wall logic [J].
Allwood, DA ;
Xiong, G ;
Faulkner, CC ;
Atkinson, D ;
Petit, D ;
Cowburn, RP .
SCIENCE, 2005, 309 (5741) :1688-1692
[2]   Applied physics - Speed limit ahead [J].
Back, CH ;
Pescia, D .
NATURE, 2004, 428 (6985) :808-809
[3]   Spin waves propagation and confinement in conducting films at the micrometer scale [J].
Bailleul, M ;
Olligs, D ;
Fermon, C ;
Demokritov, SO .
EUROPHYSICS LETTERS, 2001, 56 (05) :741-747
[4]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[5]   Arithmetic logic unit of a computer based on spin-polarised single electrons [J].
Basu, T. ;
Sarkar, S. K. ;
Bandyopadhyay, S. .
IET CIRCUITS DEVICES & SYSTEMS, 2007, 1 (03) :194-199
[6]  
BERSTEIN K, 2007, COMMUNICATION 0319
[7]   Molecular electronics: Devices, systems and tools for gigagate, gigabit chips [J].
Butts, M ;
DeHon, A ;
Goldstein, SC .
IEEE/ACM INTERNATIONAL CONFERENCE ON CAD-02, DIGEST OF TECHNICAL PAPERS, 2002, :433-440
[8]   Research directions and challenges in nanoelectronics [J].
Cavin, R. K. ;
Zhirnov, V. V. ;
Herr, D. J. C. ;
Avila, Alba ;
Hutchby, J. .
JOURNAL OF NANOPARTICLE RESEARCH, 2006, 8 (06) :841-858
[9]  
CHEN J, 2007, APPL PHYS LETT, V90
[10]  
CHEN YC, P IEDM 2006 SAN FRAN, P1