Snow cleaning of substrates increases yield of large-area organic photovoltaics

被引:27
作者
Wang, Nana [1 ,2 ]
Zimmerman, Jeramy D. [1 ]
Tong, Xiaoran [3 ]
Xiao, Xin [1 ]
Yu, Junsheng [2 ]
Forrest, Stephen R. [1 ,3 ,4 ]
机构
[1] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
[2] Univ Elect Sci & Technol China, Dept Optoelect Informat, State Key Lab Elect Thin Films & Integrated Devic, Chengdu 610054, Peoples R China
[3] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
关键词
SOLAR-CELLS;
D O I
10.1063/1.4754690
中图分类号
O59 [应用物理学];
学科分类号
摘要
We demonstrate large-area organic photovoltaic cells (OPVs) based on boron-subphthalocyanine chloride (SubPc)/C-60 and 2,4-bis[4-(N,N-diphenylamino)-2,6 dihydroxyphenyl] squaraine/C-60 heterojunctions on substrates "snow-cleaned" with a jet of mixed-phase CO2. Snow cleaning reduces particulates on the indium-tin-oxide (ITO)-coated glass substrates, thereby reducing device shorts and shunt paths. Snow cleaning improves yield of 1.44 cm(2) SubPc/C-60 OPV cells from zero for conventionally solvent-cleaned substrates to similar to 70%. The standard deviation of power conversion efficiency for a population of 19 snow-cleaned devices is <4.0%. By using a sub-electrode structure, we obtain a power conversion efficiency of 2.21%+/- 0.05% for 6.25 cm(2) SubPc/C-60 devices, compared to 2.69%+/- 0.03%, for 0.008 cm(2) devices, with the efficiency decrease due to series resistance of the ITO. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4754690]
引用
收藏
页数:4
相关论文
共 18 条
[1]   Cleaning of photomask substrates using CO2 snow [J].
Brandt, WV .
21ST ANNUAL BACUS SYMPOSIUM ON PHOTOMASK TECHNOLOGY, PTS 1 AND 2, 2002, 4562 :600-608
[2]   Area-scaling of organic solar cells [J].
Choi, Seungkeun ;
Potscavage, William J., Jr. ;
Kippelen, Bernard .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (05)
[3]  
Dou LT, 2012, NAT PHOTONICS, V6, P180, DOI [10.1038/nphoton.2011.356, 10.1038/NPHOTON.2011.356]
[4]   Ideal diode equation for organic heterojunctions. I. Derivation and application [J].
Giebink, N. C. ;
Wiederrecht, G. P. ;
Wasielewski, M. R. ;
Forrest, S. R. .
PHYSICAL REVIEW B, 2010, 82 (15)
[5]   Solar cell efficiency tables (version 39) [J].
Green, Martin A. ;
Emery, Keith ;
Hishikawa, Yoshihiro ;
Warta, Wilhelm ;
Dunlop, Ewan D. .
PROGRESS IN PHOTOVOLTAICS, 2012, 20 (01) :12-20
[6]   Reduction of Collection Efficiency of Charge Carriers with Increasing Cell Size in Polymer Bulk Heterojunction Solar Cells [J].
Jeong, Won-Ik ;
Lee, Jane ;
Park, Sun-Young ;
Kang, Jae-Wook ;
Kim, Jang-Joo .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (02) :343-347
[7]   Utilization of critical fluids in processing semiconductors and their related materials [J].
King, JW ;
Williams, LL .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2003, 7 (4-5) :413-424
[8]   Tandem organic photovoltaics using both solution and vacuum deposited small molecules [J].
Lassiter, Brian E. ;
Zimmerman, Jeramy D. ;
Panda, Anurag ;
Xiao, Xin ;
Forrest, Stephen R. .
APPLIED PHYSICS LETTERS, 2012, 101 (06)
[9]   Large-area organic solar cells with metal subelectrode on indium tin oxide anode [J].
Park, Sun-Young ;
Jeong, Won-Ik ;
Kim, Do-Geun ;
Kim, Jong-Kuk ;
Lim, Dong Chan ;
Kim, Joo Hyun ;
Kim, Jang-Joo ;
Kang, Jae-Wook .
APPLIED PHYSICS LETTERS, 2010, 96 (17)
[10]   Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells [J].
Peumans, P ;
Forrest, SR .
APPLIED PHYSICS LETTERS, 2001, 79 (01) :126-128