ER stress, hypoxia tolerance and tumor progression

被引:188
作者
Koumenis, C [1 ]
机构
[1] Wake Forest Univ, Bowman Gray Sch Med, Ctr Comprehens Canc, Dept Radiat Oncol, Winston Salem, NC 27157 USA
[2] Wake Forest Univ, Bowman Gray Sch Med, Ctr Comprehens Canc, Dept Canc Biol, Winston Salem, NC 27157 USA
[3] Wake Forest Univ, Bowman Gray Sch Med, Ctr Comprehens Canc, Dept Neurosurg, Winston Salem, NC 27157 USA
关键词
D O I
10.2174/156652406775574604
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
The development of chronic and fluctuating hypoxic regions in tumors has profound consequences for malignant progression, response to therapy and overall patient survival. Understanding the events involved in hypoxia tolerance will offer new opportunities for antitumor modalities. A universal response of tumor cells to hypoxia is a rapid and substantial decrease in the rates of macromolecular synthesis. Hypoxia induces phosphorylation of the translation initiation factor eIF2 alpha on Ser51 via activation of the endoplasmic reticulum (ER) resident kinase PERK and that this modification is required for the rapid downregulation of global protein synthesis by this hypoxic stress. PERK-dependent phosphorylation of eIF2 alpha, is one component of the Unfolded Protein Response (UPR), a coordinated program that promotes cell survival under conditions of ER stress. Inactivation of PERK or eIF2 alpha phosphorylation impairs cell survival under hypoxia, and transformed cells with inactivating PERK or eIF2 alpha mutations form tumors in nude mice that are slower growing, and have higher levels of apoptosis in hypoxic areas compared to tumors with an intact UPR. Expression of the transcription factor ATF4, a downstream effector of eIF2 alpha phosphorylation, is also upregulated by hypoxia in vitro and in human tumors and increases hypoxia tolerance. A second UPR pathway mediated by activation of IRE1 and its downstream target XBP1 is also required for hypoxia tolerance in vitro and for tumor growth. These results reveal a critical role for UPR activation for tumor cell resistance to hypoxia and tumor growth promotion and suggest that the UPR may be an attractive target for anti-tumor modalities.
引用
收藏
页码:55 / 69
页数:15
相关论文
共 128 条
[1]   Regulation of vascular endothelial growth factor (VEGF) expression is mediated by internal initiation of translation and alternative initiation of transcription [J].
Akiri, G ;
Nahari, D ;
Finkelstein, Y ;
Le, SY ;
Elroy-Stein, O ;
Levi, BZ .
ONCOGENE, 1998, 17 (02) :227-236
[2]   Anoxic induction of ATF-4 through HIF-1-independent pathways of protein stabilization in human cancer cells [J].
Ameri, K ;
Lewis, CE ;
Raida, M ;
Sowter, H ;
Hai, TW ;
Harris, AL .
BLOOD, 2004, 103 (05) :1876-1882
[3]   A novel hypoxia-inducible factor-independent hypoxic response regulating mammalian target of rapamycin and its targets [J].
Arsham, AM ;
Howell, JJ ;
Simon, MC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (32) :29655-29660
[4]   CHOP (GADD153) AND ITS ONCOGENIC VARIANT, TLS-CHOP, HAVE OPPOSING EFFECTS ON THE INDUCTION OF G(1)/S ARREST [J].
BARONE, MV ;
CROZAT, A ;
TABAEE, A ;
PHILIPSON, L ;
RON, D .
GENES & DEVELOPMENT, 1994, 8 (04) :453-464
[5]   Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response [J].
Bertolotti, A ;
Zhang, YH ;
Hendershot, LM ;
Harding, HP ;
Ron, D .
NATURE CELL BIOLOGY, 2000, 2 (06) :326-332
[6]   ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth [J].
Bi, MX ;
Naczki, C ;
Koritzinsky, M ;
Fels, D ;
Blais, J ;
Hu, NP ;
Harding, H ;
Novoa, I ;
Varia, M ;
Raleigh, J ;
Scheuner, D ;
Kaufman, RJ ;
Bell, J ;
Ron, D ;
Wouters, BG ;
Koumenis, C .
EMBO JOURNAL, 2005, 24 (19) :3470-3481
[7]   Activating transcription factor 4 is translationally regulated by hypoxic stress [J].
Blais, JD ;
Filipenko, V ;
Bi, MX ;
Harding, HP ;
Ron, D ;
Koumenis, C ;
Wouters, BG ;
Bell, JC .
MOLECULAR AND CELLULAR BIOLOGY, 2004, 24 (17) :7469-7482
[8]   Endoplasmic reticulum stress-induced cell death requires mitochondrial membrane permeabilization [J].
Boya, P ;
Cohen, I ;
Zamzami, N ;
Vieira, HLA ;
Kroemer, G .
CELL DEATH AND DIFFERENTIATION, 2002, 9 (04) :465-467
[9]   Regulation of apoptosis by endoplasmic reticulum pathways [J].
Breckenridge, DG ;
Germain, M ;
Mathai, JP ;
Nguyen, M ;
Shore, GC .
ONCOGENE, 2003, 22 (53) :8608-8618
[10]   PERK mediates cell-cycle exit during the mammalian unfolded protein response [J].
Brewer, JW ;
Diehl, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (23) :12625-12630