Protection with metabotropic glutamate 1 receptor antagonists in models of ischemic neuronal death: time-course and mechanisms

被引:129
作者
Pellegrini-Giampietro, DE
Peruginelli, F
Meli, E
Cozzi, A
Albani-Torregrossa, S
Pellicciari, R
Moroni, F
机构
[1] Univ Florence, Dipartimento Farmacol Preclin & Clin, I-50139 Florence, Italy
[2] Univ Perugia, Ist Chim & Tecnol Farm, I-06123 Perugia, Italy
关键词
mGlu1; receptors; AIDA; CBPG; neuroprotection; oxygen-glucose deprivation; global ischemia;
D O I
10.1016/S0028-3908(99)00097-0
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
In order to study the role of metabotropic glutamate 1 (mGlu1) receptors in ischemic neuronal death, we examined the effects of the recently characterized and relatively selective mGlu1 receptor antagonists 1-aminoindan-1,5-dicarboxylic acid (AIDA) and (S)-( +)-2-(3'-carboxybicyclo[1.1.1]pentyl)-glycine (CBPG) in murine cortical cell cultures and rat organotypic hippocampal slices exposed to oxygen-glucose deprivation (OGD) and in vivo, following transient global ischemia in gerbils. AIDA and CBPG significantly reduced neuronal death when added to the incubation medium during the OGD insult and the subsequent recovery period. Neuroprotection was observed even when these compounds were added up to 60 min (in cortical neurons) or 30 min (in hippocampal slices) after OGD. In vivo, i.c.v. administration of AIDA and CBPG reduced hippocampal CAI pyramidal cell injury following transient global ischemia. Neuroprotection was also observed when AIDA was added to the hippocampal perfusion fluid in microdialysis experiments, and this effect was associated with an increase in the basal output of GABA. These findings demonstrate that AIDA and CBPG are neuroprotective when administered during the maturation of ischemic damage and that different mechanisms are likely to be involved in mediating their effects following blockade of mGlu1 receptors in cortical and hippocampal neurons. (C) 1999 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1607 / 1619
页数:13
相关论文
共 77 条
[1]  
AbdelHamid KM, 1997, J NEUROSCI, V17, P3538
[2]   QUISQUALATE METABOTROPIC RECEPTORS MODULATE NMDA CURRENTS AND FACILITATE INDUCTION OF LONG-TERM POTENTIATION THROUGH PROTEIN-KINASE-C [J].
ANIKSZTEJN, L ;
OTANI, S ;
BENARI, Y .
EUROPEAN JOURNAL OF NEUROSCIENCE, 1992, 4 (06) :500-505
[3]   SIGNAL TRANSDUCTION AND PHARMACOLOGICAL CHARACTERISTICS OF A METABOTROPIC GLUTAMATE RECEPTOR, MGLUR1, IN TRANSFECTED CHO CELLS [J].
ARAMORI, I ;
NAKANISHI, S .
NEURON, 1992, 8 (04) :757-765
[4]   THE METABOTROPIC GLUTAMATE-RECEPTOR (MGLUR1-ALPHA) IS CONCENTRATED AT PERISYNAPTIC MEMBRANE OF NEURONAL SUBPOPULATIONS AS DETECTED BY IMMUNOGOLD REACTION [J].
BAUDE, A ;
NUSSER, Z ;
ROBERTS, JDB ;
MULVIHILL, E ;
MCILHINNEY, RAJ ;
SOMOGYI, P .
NEURON, 1993, 11 (04) :771-787
[5]   ELEVATION OF THE EXTRACELLULAR CONCENTRATIONS OF GLUTAMATE AND ASPARTATE IN RAT HIPPOCAMPUS DURING TRANSIENT CEREBRAL-ISCHEMIA MONITORED BY INTRACEREBRAL MICRODIALYSIS [J].
BENVENISTE, H ;
DREJER, J ;
SCHOUSBOE, A ;
DIEMER, NH .
JOURNAL OF NEUROCHEMISTRY, 1984, 43 (05) :1369-1374
[6]   SYNAPTIC INPUT OF HORIZONTAL INTERNEURONS IN STRATUM-ORIENS OF THE HIPPOCAMPAL CA1 SUBFIELD - STRUCTURAL BASIS OF FEEDBACK ACTIVATION [J].
BLASCOIBANEZ, JM ;
FREUND, TF .
EUROPEAN JOURNAL OF NEUROSCIENCE, 1995, 7 (10) :2170-2180
[7]   Neuroprotective activity of the potent and selective mGlula metabotropic glutamate receptor antagonist, (+)-2-methyl-4 caroxyphenylglycine (LY367385): comparison with LY357366, a broader spectrum antagonist with equal affinity for mGlula and mGlu5 receptors [J].
Bruno, V ;
Battaglia, G ;
Kingston, A ;
O'Neill, MJ ;
Catania, MV ;
Di Grezia, R ;
Nicoletti, F .
NEUROPHARMACOLOGY, 1999, 38 (02) :199-207
[8]   ACTIVATION OF METABOTROPIC GLUTAMATE RECEPTORS COUPLED TO INOSITOL PHOSPHOLIPID HYDROLYSIS AMPLIFIES NMDA-INDUCED NEURONAL DEGENERATION IN CULTURED CORTICAL-CELLS [J].
BRUNO, V ;
COPANI, A ;
KNOPFEL, T ;
KUHN, R ;
CASABONA, G ;
DELLALBANI, P ;
CONDORELLI, DF ;
NICOLETTI, F .
NEUROPHARMACOLOGY, 1995, 34 (08) :1089-1098
[9]   THE INHIBITORY MGLUR AGONIST, S-4-CARBOXY-3-HYDROXY-PHENYLGLYCINE SELECTIVELY ATTENUATES NMDA NEUROTOXICITY AND OXYGEN GLUCOSE DEPRIVATION-INDUCED NEURONAL DEATH [J].
BUISSON, A ;
CHOI, DW .
NEUROPHARMACOLOGY, 1995, 34 (08) :1081-1087
[10]   Functional coupling between ryanodine receptors and L-type calcium channels in neurons [J].
Chavis, P ;
Fagni, L ;
Lansman, JB ;
Bockaert, J .
NATURE, 1996, 382 (6593) :719-722