Efficiency and convergence properties of slice samplers

被引:39
作者
Mira, A
Tierney, L
机构
[1] Univ Insubria, Fac Econ, I-21100 Varese, Italy
[2] Univ Minnesota, Minneapolis, MN 55455 USA
关键词
auxiliary variables; efficiency of MCMC; geometric ergodicity; Markov chain Monte Carlo; Metropolis-Hastings algorithm; Peskun ordering; uniform ergodicity;
D O I
10.1111/1467-9469.00267
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The slice sampler (SS) is a method of constructing a reversible Markov chain with a specified invariant distribution. Given an independence Metropolis-Hastings algorithm (IMHA) it is always possible to construct a SS that dominates it in the Peskun sense. This means that the resulting SS produces estimates with a smaller asymptotic variance than the IMHA. Furthermore the SS has a smaller second-largest eigenvalue. This ensures faster convergence to the target distribution. A sufficient condition for uniform ergodicity of them SS is given and an: upper bound for the rate of convergence to stationarity is provided.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 19 条
[1]  
[Anonymous], 1998, THESIS U MINNESOTA
[2]  
BESAG J, 1993, J ROY STAT SOC B MET, V55, P25
[3]  
Damien P, 1999, J ROY STAT SOC B, V61, P331
[4]   GENERALIZATION OF THE FORTUIN-KASTELEYN-SWENDSEN-WANG REPRESENTATION AND MONTE-CARLO ALGORITHM [J].
EDWARDS, RG ;
SOKAL, AD .
PHYSICAL REVIEW D, 1988, 38 (06) :2009-2012
[5]  
Geyer CJ, 1992, STAT SCI, V7, P473, DOI [10.1214/ss/1177011137, DOI 10.1214/SS/1177011137]
[6]  
GEYER JC, 1998, UNPUB MARKOV CHAIN M
[7]  
GREEN PJ, 1997, J ROY STAT SOC B MET, V59, P511
[8]  
Higdon DM, 1998, J AM STAT ASSOC, V93, P585
[9]   Metropolized independent sampling with comparisons to rejection sampling and importance sampling [J].
Liu, JS .
STATISTICS AND COMPUTING, 1996, 6 (02) :113-119
[10]  
LIU JS, 1995, J ROY STAT SOC B MET, V57, P157