Accurate Prediction of Noncovalent Interaction Energies with the Effective Fragment Potential Method: Comparison of Energy Components to Symmetry-Adapted Perturbation Theory for the S22 Test Set

被引:96
作者
Flick, Joanna C. [1 ]
Kosenkov, Dmytro [1 ]
Hohenstein, Edward G. [2 ,3 ]
Sherrill, C. David [2 ,3 ]
Slipchenko, Lyudmila V. [1 ]
机构
[1] Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA
[2] Georgia Inst Technol, Sch Chem & Biochem, Ctr Computat Mol Sci & Technol, Atlanta, GA 30332 USA
[3] Georgia Inst Technol, Sch Computat Sci & Engn, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
MOLECULAR-ORBITAL METHODS; DENSITY-FUNCTIONAL METHODS; GAUSSIAN-BASIS SETS; PI-PI-INTERACTIONS; QUANTUM-CHEMISTRY; WAVE-FUNCTION; FORCE-FIELD; DNA; TRANSITION; ELEMENTS;
D O I
10.1021/ct200673a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Noncovalent interactions play an important role in the stabilization of biological molecules. The effective fragment potential (EFP) is a computationally inexpensive ab initio-based method for modeling intermolecular interactions in noncovalently bound systems. The accuracy of EFP is benchmarked against the S22 and S66 data sets for noncovalent interactions [Jurecka, P.; Sponer, J.; Cerny, J.; Hobza, P. Phys. Chem. Chem. Phys. 2006, 8, 1985; Rezac, J.; Riley, K E.; Hobza, P. J. Chem: Theory Comput. 2011, 7, 2427]. The mean unsigned error (MUE) of EFP interaction energies with respect to coupled-cluster singles, doubles, and perturbative triples in the complete basis set limit [CCSD(T)/CBS] is 0.9 and 0.6 kcal/mol for S22 and S66, respectively, which is similar to the MUE of MP2 and SCS-MP2 for the same data sets, but with a greatly reduced computational expense. Moreover, EFP outperforms classical force fields and popular DFT functionals such as B3LYP and PBE, while newer dispersion-corrected functionals provide a more accurate description of noncovalent interactions. Comparison of EFP energy components with the symmetry-adapted perturbation theory (SAPT) energies for the S22 data set shows that the main source of errors in EFP comes from Coulomb and polarization terms and provides a valuable benchmark for further improvements in the accuracy of EFP and force fields in general.
引用
收藏
页码:2835 / 2843
页数:9
相关论文
共 74 条
[1]   Modeling styrene-styrene interactions [J].
Adamovic, I ;
Li, H ;
Lamm, MH ;
Gordon, MS .
JOURNAL OF PHYSICAL CHEMISTRY A, 2006, 110 (02) :519-525
[2]   Density functional theory based effective fragment potential method [J].
Adamovic, I ;
Freitag, MA ;
Gordon, MS .
JOURNAL OF CHEMICAL PHYSICS, 2003, 118 (15) :6725-6732
[3]   Methanol-water mixtures: A microsolvation study using the effective fragment potential method [J].
Adamovic, Ivana ;
Gordon, Mark S. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2006, 110 (34) :10267-10273
[4]   Investigations on C-H• • •π interactions in RNA binding proteins [J].
Anbarasu, Anand ;
Anand, Sudha ;
Babu, M. Madan ;
Sethumadhavan, Rao .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2007, 41 (03) :251-259
[5]  
[Anonymous], J CHEM PHYS
[6]   Density-functional approaches to noncovalent interactions: A comparison of dispersion corrections (DFT-D), exchange-hole dipole moment (XDM) theory, and specialized functionals [J].
Burns, Lori A. ;
Vazquez-Mayagoitia, Alvaro ;
Sumpter, Bobby G. ;
Sherrill, C. David .
JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (08)
[7]   Double-Helical → Ladder Structural Transition in the B-DNA is Induced by a Loss of Dispersion Energy [J].
Cerny, Jiri ;
Kabelac, Martin ;
Hobza, Pavel .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (47) :16055-16059
[8]   Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections [J].
Chai, Jeng-Da ;
Head-Gordon, Martin .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2008, 10 (44) :6615-6620
[9]   EFFICIENT DIFFUSE FUNCTION-AUGMENTED BASIS SETS FOR ANION CALCULATIONS. III. THE 3-21+G BASIS SET FOR FIRST-ROW ELEMENTS, LI-F [J].
CLARK, T ;
CHANDRASEKHAR, J ;
SPITZNAGEL, GW ;
SCHLEYER, PV .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (03) :294-301
[10]   An effective fragment method for modeling solvent effects in quantum mechanical calculations [J].
Day, PN ;
Jensen, JH ;
Gordon, MS ;
Webb, SP ;
Stevens, WJ ;
Krauss, M ;
Garmer, D ;
Basch, H ;
Cohen, D .
JOURNAL OF CHEMICAL PHYSICS, 1996, 105 (05) :1968-1986