Evolutionary convergence in adaptation of proteins to temperature:: A4-Lactate dehydrogenases of pacific damselfishes (Chromis spp.)

被引:81
作者
Johns, GC [1 ]
Somero, GN [1 ]
机构
[1] Stanford Univ, Hopkins Marine Stn, Pacific Grove, CA 93950 USA
关键词
temperature adaptation; A(4)-LDH; enzyme kinetics; ldh-a gene; ortholog evolution; Chromis;
D O I
10.1093/molbev/msh021
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We have compared the kinetic properties (Michaelis-Menten constant [K-m] and catalytic rate constant [k(cat)]) and amino acid sequences of orthologs of lactate dehydrogenase-A (A(4)-LDH) from congeners of Pacific damselfishes (genus Chromis) native to cold-temperate and tropical habitats to elucidate mechanisms of enzymatic adaptation to temperature. Specifically, we determined whether the sites of adaptive variation and the types of amino acids involved in substitutions at these sites were similar in the Chromis orthologs and other orthologs of warm-adapted and cold-adapted A(4)-LDH previously studied. We report striking evolutionary convergence in temperature adaptation of this protein and present further support for the hypothesis that enzyme adaptation to temperature involves subtle amino acid changes at a few sites that affect the mobility of the portions of the enzyme that are involved in rate-determining catalytic conformational changes. We tested the predicted effects of differences in sequence using site-directed mutagenesis. A single amino acid substitution in a key hinge region of the A(4)-LDH molecule is sufficient to change the kinetic characteristics of a temperate A(4)-LDH to that of a tropical ortholog. This substitution is at the same location that was identified in previous studies of adaptive variation in A(4)-LDH and was hypothesized to be important in adjusting K-m and k(cat). Our results suggest that certain sites within an enzyme, notably those that establish the energy changes associated with rate-limiting movements of protein structure during catalysis, are "hot spots" of adaptation and that common types of amino acid substitutions occur at these sites to adapt structural "flexibility" and kinetic properties. Thus, despite the wide array of options that proteins have to adjust their structural stabilities in the face of thermal stress, the adaptive changes that couple "flexibility" to alterations of function may be limited in their diversity.
引用
收藏
页码:314 / 320
页数:7
相关论文
共 23 条
[1]   REFINED CRYSTAL-STRUCTURE OF DOGFISH M4 APO-LACTATE DEHYDROGENASE [J].
ABADZAPATERO, C ;
GRIFFITH, JP ;
SUSSMAN, JL ;
ROSSMANN, MG .
JOURNAL OF MOLECULAR BIOLOGY, 1987, 198 (03) :445-467
[2]  
Allen GR., 1991, DAMSELFISHES WORLD
[3]  
DAVAIL S, 1994, J BIOL CHEM, V269, P17448
[4]   DESIGN AND SYNTHESIS OF NEW ENZYMES BASED ON THE LACTATE-DEHYDROGENASE FRAMEWORK [J].
DUNN, CR ;
WILKS, HM ;
HALSALL, DJ ;
ATKINSON, T ;
CLARKE, AR ;
MUIRHEAD, H ;
HOLBROOK, JJ .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES B-BIOLOGICAL SCIENCES, 1991, 332 (1263) :177-&
[5]   Psychrophilic enzymes: molecular basis of cold adaptation [J].
Feller, G ;
Gerday, C .
CELLULAR AND MOLECULAR LIFE SCIENCES, 1997, 53 (10) :830-841
[6]   Hot spots in cold adaptation:: Localized increases in conformational flexibility in lactate dehydrogenase A4 orthologs of Antarctic notothenioid fishes [J].
Fields, PA ;
Somero, GN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (19) :11476-11481
[7]   Review: Protein function at thermal extremes: balancing stability and flexibility [J].
Fields, PA .
COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR AND INTEGRATIVE PHYSIOLOGY, 2001, 129 (2-3) :417-431
[8]   ANALYSIS OF PROTEIN LOOP CLOSURE - 2 TYPES OF HINGES PRODUCE ONE MOTION IN LACTATE-DEHYDROGENASE [J].
GERSTEIN, M ;
CHOTHIA, C .
JOURNAL OF MOLECULAR BIOLOGY, 1991, 220 (01) :133-149
[9]   SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling [J].
Guex, N ;
Peitsch, MC .
ELECTROPHORESIS, 1997, 18 (15) :2714-2723
[10]  
Hochachka P. W., 2002, Biochemical adaptation: Mechanism and process in physiological evolution