Efficiently mining maximal frequent itemsets

被引:152
作者
Gouda, K [1 ]
Zaki, MJ [1 ]
机构
[1] Kyushu Univ, Comp Sci & Commun Engg Dept, Fukuoka 812, Japan
来源
2001 IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS | 2001年
关键词
D O I
10.1109/ICDM.2001.989514
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present GenMax, a backtrack search based algorithm for mining maximal frequent itemsets. GenMax uses a number of optimizations to prune the search space. It uses a novel technique called progressive focusing to perform maximality checking, and diffset propagation to perform fast frequency computation. Systematic experimental comparison with previous work indicates that different methods have varying strengths and weaknesses based on dataset characteristics. We found GenMax to be a highly efficient method to mine the exact set of maximal patterns.
引用
收藏
页码:163 / 170
页数:8
相关论文
共 11 条
  • [1] AGRAWAL R, 2000, ACM SIGKDD C AUG
  • [2] Agrawal R., 1996, ADV KNOWLEDGE DISCOV
  • [3] BAYARDO RJ, 1998, ACM SIGMOD C JUN
  • [4] BURDICK D, 2001, INT C DAT ENG APR
  • [5] Gunopulos D., 1997, INT C DAT THEOR JAN
  • [6] HAN J, 2000, ACM SIGMOD C MAY
  • [7] LIN D, 1998, INT C EXT DAT TECHN
  • [8] AN ALGORITHM FOR DYNAMIC SUBSET AND INTERSECTION TESTING
    YELLIN, DM
    [J]. THEORETICAL COMPUTER SCIENCE, 1994, 129 (02) : 397 - 406
  • [9] ZAKI MJ, 2000, ACM SIGKDD C AUG
  • [10] ZAKI MJ, 1999, TR9910 RPI CS DEP