Evolution strategy and hierarchical clustering

被引:20
作者
Aichholzer, O [1 ]
Aurenhammer, F
Brandstätter, B
Ebner, T
Krasser, H
Magele, C
Mühlmann, M
Renhart, W
机构
[1] Graz Univ Technol, Inst Theoret Comp Sci, A-8010 Graz, Austria
[2] Graz Univ Technol, Inst Fundamentals & Theory Elect Engn, A-8010 Graz, Austria
关键词
Clustering methods; Evolution strategies; Stochastic optimization;
D O I
10.1109/20.996267
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In most real world optimization problems, one tries to determine the global among some or even numerous local solutions within the feasible region of parameters. Nevertheless, it could be worthwhile to investigate some of the local solutions as well. A most desirable behavior would be that the optimization strategy behaves globally and yields additional information about local minima detected on the way to the global solution. In this paper, a clustering algorithm has been implemented into an extended higher order evolution strategy in order to achieve these goals.
引用
收藏
页码:1041 / 1044
页数:4
相关论文
共 7 条
[1]   Stochastic algorithms in electromagnetic optimization [J].
Alotto, PG ;
Eranda, C ;
Brandstatter, B ;
Furntratt, G ;
Magele, C ;
Molinari, G ;
Nervi, M ;
Preis, K ;
Repetto, M ;
Richter, KR .
IEEE TRANSACTIONS ON MAGNETICS, 1998, 34 (05) :3674-3684
[2]  
[Anonymous], STUDIA MATH
[3]  
Fogel D.B., 1995, EVOLUTIONARY COMPUTA
[4]  
Hartigan J. A., 1975, CLUSTERING ALGORITHM
[5]  
Rechenberg I., 1994, Evolutionsstrategie'94
[6]  
Sareni B., 1998, IEEE Transactions on Evolutionary Computation, V2, P97, DOI 10.1109/4235.735432
[7]  
TAKAHASHI N, 1996, P TEAM WORKSH 6 ROUN