Comparison of different torsion angle approaches for NMR structure determination

被引:5
作者
Bardiaux, B
Malliavin, TE
Nilges, M
Mazur, AK
机构
[1] Inst Biol Physicochim, Lab Biochim Theor, CNRS, UPR 9080, F-75005 Paris, France
[2] Inst Pasteur, Unite Bioinformat Struct, CNRS, URA 2185, F-75724 Paris 15, France
关键词
BMRB; cis peptides; CNS; CYANA; ICMD; NMR; RECOORD; ribosomal protein; structure calculation; torsion angle space; XPLOR-NIH;
D O I
10.1007/s10858-006-6889-8
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A new procedure for NMR structure determination, based on the Internal Coordinate Molecular Dynamics (ICMD) approach, is presented. The method finds biopolymer conformations that satisfy usual NMR-derived restraints by using high temperature dynamics in torsion angle space. A variable target function algorithm gradually increases the number of NOE-based restraints applied, with the treatment of ambiguous and floating restraints included. This soft procedure allows combining artificially high temperature with a general purpose force-field including Coulombic and Lennard-Jones non-bonded interactions, which improves the quality of the ensemble of conformations obtained in the gas-phase. The new method is compared to existing algorithms by using the structures of eight ribosomal proteins earlier obtained with state-of-the-art procedures and included into the RECOORD database [Nederveen, A., Doreleijers, J., Vranken, W., Miller, Z., Spronk, C., Nabuurs, S., Guntert, P., Livny, M., Markley, M., Nilges, M., Ulrich, E., Kaptein, R. and Bonvin, A.M. (2005) Proteins, 59, 662-672]. For the majority of tested proteins, the ICMD algorithm shows similar convergence and somewhat better quality Z scores for the Phi, psi distributions. The new method is more computationally demanding although the overall load is reasonable.
引用
收藏
页码:153 / 166
页数:14
相关论文
共 47 条
  • [1] NEW METHODOLOGY FOR COMPUTER-AIDED MODELING OF BIOMOLECULAR STRUCTURE AND DYNAMICS .2. LOCAL DEFORMATIONS AND CYCLES
    ABAGYAN, RA
    MAZUR, AK
    [J]. JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 1989, 6 (04) : 833 - 845
  • [2] Solution NMR structure of the 30S ribosomal protein S28E from Pyrococcus horikoshii
    Aramini, JM
    Huang, YPJ
    Cort, JR
    Goldsmith-Fischman, S
    Xiao, R
    Shih, LY
    HO, CK
    Liu, JF
    Rost, B
    Honig, B
    Kennedy, MA
    Acton, TB
    Montelione, GT
    [J]. PROTEIN SCIENCE, 2003, 12 (12) : 2823 - 2830
  • [3] MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH
    BERENDSEN, HJC
    POSTMA, JPM
    VANGUNSTEREN, WF
    DINOLA, A
    HAAK, JR
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) : 3684 - 3690
  • [4] CALCULATION OF PROTEIN CONFORMATIONS BY PROTON PROTON DISTANCE CONSTRAINTS - A NEW EFFICIENT ALGORITHM
    BRAUN, W
    GO, N
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 1985, 186 (03) : 611 - 626
  • [5] Brunger AT, 1998, ACTA CRYSTALLOGR D, V54, P905, DOI 10.1107/s0907444998003254
  • [6] Joint x-ray and NMR refinement of the yeast L30e-mRNA complex
    Chao, JA
    Williamson, JR
    [J]. STRUCTURE, 2004, 12 (07) : 1165 - 1176
  • [7] Crystal structure of ribosomal protein L30e from the extreme thermophile Thermococcus celer:: Thermal stability and RNA binding
    Chen, YW
    Bycroft, M
    Wong, KB
    [J]. BIOCHEMISTRY, 2003, 42 (10) : 2857 - 2865
  • [8] CORNELL WD, 1995, J AM CHEM SOC, V117, P5197
  • [9] Protein backbone angle restraints from searching a database for chemical shift and sequence homology
    Cornilescu, G
    Delaglio, F
    Bax, A
    [J]. JOURNAL OF BIOMOLECULAR NMR, 1999, 13 (03) : 289 - 302
  • [10] Completeness of NOEs in protein structures: A statistical analysis of NMR data
    Doreleijers, JF
    Raves, ML
    Rullmann, T
    Kaptein, R
    [J]. JOURNAL OF BIOMOLECULAR NMR, 1999, 14 (02) : 123 - 132