The Lyapunov-Malkin theorem and stabilization of the unicycle with rider

被引:20
作者
Zenkov, DV
Bloch, AM
Marsden, JE
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[2] CALTECH, Pasadena, CA 91125 USA
关键词
nonholonomic system; underactuated feedback control;
D O I
10.1016/S0167-6911(01)00187-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper analyzes stabilization of a nonholonomic system consisting of a unicycle with rider. It is shown that one can achieve stability of slow steady vertical motions by imposing a feedback control force on the rider's limb. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:293 / 302
页数:10
相关论文
共 11 条
[1]  
Bloch AM, 1998, IEEE DECIS CONTR P, P1446, DOI 10.1109/CDC.1998.758490
[2]  
Bloch AM, 1997, IEEE DECIS CONTR P, P2356, DOI 10.1109/CDC.1997.657135
[3]   Nonholonomic mechanical systems with symmetry [J].
Bloch, AM ;
Krishnaprasad, PS ;
Marsden, JE ;
Murray, RM .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1996, 136 (01) :21-99
[4]   CONTROL AND STABILIZATION OF NONHOLONOMIC DYNAMIC-SYSTEMS [J].
BLOCH, AM ;
REYHANOGLU, M ;
MCCLAMROCH, NH .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1992, 37 (11) :1746-1757
[5]  
KARAPETYAN AV, 1981, PMM-J APPL MATH MEC, V45, P604
[6]  
Lyapunov A. M., 1992, GEN PROBLEM STABILIT
[7]  
MALKIN IG, 1938, MAT SBORNIK, V35, P47
[8]  
Markeev A. P., 1992, DYNAMICS BODY BEING
[9]  
Marsden J., 1992, LONDON MATH SOC LECT, V174
[10]  
Zenkov D. V., 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304), P3470, DOI 10.1109/CDC.1999.827861