Wiener-Hammerstein systems modeling using diagonal Volterra kernels coefficients

被引:60
作者
Kibangou, AY [1 ]
Favier, G [1 ]
机构
[1] UNSA, CNRS, Lab I3S, F-06903 Sophia Antipolis, France
关键词
alternating least squares (ALS); bilinear decomposition; parameter estimation; Toeplitz matrix; Volterra models; Wiener-Hammerstein models;
D O I
10.1109/LSP.2006.871705
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this letter, we first present explicit relations between block-oriented nonlinear representations and Volterra models. For an identification purpose, we show that the estimation of the diagonal coefficients of the Volterra kernels associated with the considered block-oriented nonlinear structures is sufficient to recover the overall model. An alternating least squares-type algorithm is provided to carry out this model identification.
引用
收藏
页码:381 / 384
页数:4
相关论文
共 9 条
[1]   Analysis of stochastic gradient identification of Wiener-Hammerstein systems for nonlinearities with hermite polynomial expansions [J].
Bershad, NJ ;
Celka, P ;
McLaughlin, S .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2001, 49 (05) :1060-1072
[2]   IDENTIFICATION OF SYSTEMS CONTAINING LINEAR DYNAMIC AND STATIC NON-LINEAR ELEMENTS [J].
BILLINGS, SA ;
FAKHOURI, SY .
AUTOMATICA, 1982, 18 (01) :15-26
[3]  
Feher K., 1993, DIGITAL COMMUNICATIO
[4]  
KIBANGOU A, UNPUB INPUT DESIGN E
[5]   Second-order statistical properties of nonlinearly distorted phase-shift keyed (PSK) signals [J].
López-Valcarce, R ;
Dasgupta, S .
IEEE COMMUNICATIONS LETTERS, 2003, 7 (07) :323-325
[6]   IDENTIFICATION OF NONLINEAR BIOLOGICAL-SYSTEMS USING LAGUERRE EXPANSIONS OF KERNELS [J].
MARMARELIS, VZ .
ANNALS OF BIOMEDICAL ENGINEERING, 1993, 21 (06) :573-589
[7]   On the evaluation of estimated impulse responses [J].
Morgan, DR ;
Benesty, J ;
Sondhi, MM .
IEEE SIGNAL PROCESSING LETTERS, 1998, 5 (07) :174-176
[8]   Multichannel blind identification: From subspace to maximum likelihood methods [J].
Tong, L ;
Perreau, S .
PROCEEDINGS OF THE IEEE, 1998, 86 (10) :1951-1968
[9]  
Wiener N., 1966, Nonlinear Problems in Random Theory