Smoothness estimates for soft-threshold denoising via translation-invariant wavelet transforms

被引:54
作者
Berkner, K
Wells, RO
机构
[1] Ricoh Innovat Inc, Menlo Pk, CA 94025 USA
[2] Int Jacobs Univ Bremen, D-28759 Bremen, Germany
关键词
D O I
10.1006/acha.2001.0366
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a generalization of the Donoho-Johnstone denoising model for the case of the translation-invariant wavelet transform. Instead of soft-thresholding coefficients of the classical orthogonal discrete wavelet transform, we study soft-thresholding of the coefficients of the translation-invariant discrete wavelet transform. This latter transform is not an orthogonal transformation. As a first step, we construct a level-dependent threshold to remove all the noise in the wavelet domain. Subsequently, we use the theory of interpolating wavelet transforms to characterize the smoothness of an estimated denoised function. Based on the fact that the inverse of the translation-invariant discrete transform includes averaging over all shifts, we use smoother autocorrelation functions in the representation of the estimated denoised function in place of Daubechies scaling functions. (C) 2002 Elsevier Science.
引用
收藏
页码:1 / 24
页数:24
相关论文
共 35 条
[1]  
[Anonymous], 1998, Wavelet Analysis: the Scalable Structure of Information
[2]   FAST WAVELET TRANSFORMS AND NUMERICAL ALGORITHMS .1. [J].
BEYLKIN, G ;
COIFMAN, R ;
ROKHLIN, V .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1991, 44 (02) :141-183
[3]  
Beylkin G., 1992, SIAM J NUMER ANAL, V6, P1716
[4]  
BEYLKIN G, 1994, IMPLEMENTATION OPERA
[5]  
Burrus C.S., 1998, introduction to Wavelets and Wavelet Transforms-A Primer
[6]  
Cohen A., 1992, COMPT REND ACAD SC A, V316, P417
[7]  
Coifman R. R., 1995, LECT NOTES STAT, V103, P125, DOI [DOI 10.1007/978-1-4612-2544-7_9, DOI 10.1002/CPA.3160410705, 10.1002/cpa.3160410705]
[8]   ENTROPY-BASED ALGORITHMS FOR BEST BASIS SELECTION [J].
COIFMAN, RR ;
WICKERHAUSER, MV .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (02) :713-718
[9]   Wavelet-based statistical signal processing using hidden Markov models [J].
Crouse, MS ;
Nowak, RD ;
Baraniuk, RG .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (04) :886-902
[10]  
Daubechies I., 1993, Ten Lectures of Wavelets, V28, P350