Characterization of the gene cluster of high-molecular-mass nitrile hydratase (H-NHase) induced by its reaction product in Rhodococcus rhodochrous J1

被引:108
作者
Komeda, H [1 ]
Kobayashi, M [1 ]
Shimizu, S [1 ]
机构
[1] KYOTO UNIV,FAC AGR,DEPT AGR CHEM,KYOTO 606,JAPAN
关键词
amide; regulation; AmiC; transposase; cobalt;
D O I
10.1073/pnas.93.9.4267
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The 4.6-kb region 5'-upstream from the gene encoding a cobalt-containing and amide-induced high molecular mass-nitrile hydratase (H-NHase) from Rhodococcus rhodochrous J1 was found to be required for the expression of the H-NHase gene with a host-vector system in a Rhodococcus strain. Sequence analysis has revealed that there are at least five open reading frames (H-ORF1 similar to 5) in addition to H-NHase alpha- and beta-subunit genes. Deletion of H-ORF1 and H-ORF2 resulted in decrease of NHase activity, suggesting a positive regulatory role of both ORFs in the expression of the H-NHase gene. H-ORF1 showed significant similarity to a regulatory protein, AmiC, which is involved in regulation of amidase expression by binding an inducer amide in Pseudomonas aeruginosa. H-ORF4, which has been found to be uninvolved in regulation of H-NHase expression by enzyme assay for its deletion transformant and Northern blot analysis for R. rhodochrous J1, showed high similarity to transposases from insertion sequences of several bacteria. Determination of H-NHase activity and H-NHase mRNA levels in R. rhodochrous J1 has indicated that the expression of the H-NHase gene is regulated by an amide at the transcriptional level. These findings suggest the participation of H-ORF4 (IS1164) in the organization of the H-NHase gene cluster and the involvement of H-ORF1 in unusual induction mechanism, in which H-NHase is formed by amides (the products in the NHase reaction), but not by nitriles (the substrates).
引用
收藏
页码:4267 / 4272
页数:6
相关论文
共 33 条
[1]   A NEW ENZYME NITRILE HYDRATASE WHICH DEGRADES ACETONITRILE IN COMBINATION WITH AMIDASE [J].
ASANO, Y ;
TANI, Y ;
YAMADA, H .
AGRICULTURAL AND BIOLOGICAL CHEMISTRY, 1980, 44 (09) :2251-2252
[2]   DIFFERENTIAL REGULATION OF AN AUXIN-PRODUCING NITRILASE GENE FAMILY IN ARABIDOPSIS-THALIANA [J].
BARTEL, B ;
FINK, GR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (14) :6649-6653
[3]   CLONING AND EXPRESSION OF AN ARABIDOPSIS NITRILASE WHICH CAN CONVERT INDOLE-3-ACETONITRILE TO THE PLANT HORMONE, INDOLE-3-ACETIC-ACID [J].
BARTLING, D ;
SEEDORF, M ;
MITHOFER, A ;
WEILER, EW .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1992, 205 (01) :417-424
[4]   MOLECULAR CHARACTERIZATION OF 2 CLONED NITRILASES FROM ARABIDOPSIS-THALIANA - KEY ENZYMES IN BIOSYNTHESIS OF THE PLANT HORMONE INDOLE-3-ACETIC-ACID [J].
BARTLING, D ;
SEEDORF, M ;
SCHMIDT, RC ;
WEILER, EW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (13) :6021-6025
[5]   NUCLEOTIDE-SEQUENCE ANALYSIS OF IS256 FROM THE STAPHYLOCOCCUS-AUREUS GENTAMICIN-TOBRAMYCIN-KANAMYCIN-RESISTANCE TRANSPOSON TN4001 [J].
BYRNE, ME ;
ROUCH, DA ;
SKURRAY, RA .
GENE, 1989, 81 (02) :361-367
[6]   SINGLE-STEP METHOD OF RNA ISOLATION BY ACID GUANIDINIUM THIOCYANATE PHENOL CHLOROFORM EXTRACTION [J].
CHOMCZYNSKI, P ;
SACCHI, N .
ANALYTICAL BIOCHEMISTRY, 1987, 162 (01) :156-159
[7]   GENETIC AND FUNCTIONAL-ANALYSIS OF THE MULTIPLE ANTIBIOTIC-RESISTANCE (MAR) LOCUS IN ESCHERICHIA-COLI [J].
COHEN, SP ;
HACHLER, H ;
LEVY, SB .
JOURNAL OF BACTERIOLOGY, 1993, 175 (05) :1484-1492
[8]  
COLLINS DM, 1991, FEMS MICROBIOL LETT, V83, P11
[9]  
Conn EE, 1981, CYANIDE BIOL, P183
[10]   THE FAS OPERON OF RHODOCOCCUS FASCIANS ENCODES NEW GENES REQUIRED FOR EFFICIENT FASCIATION OF HOST PLANTS [J].
CRESPI, M ;
VEREECKE, D ;
TEMMERMAN, W ;
VANMONTAGU, M ;
DESOMER, J .
JOURNAL OF BACTERIOLOGY, 1994, 176 (09) :2492-2501