Decoding of signal from phase modulated unstable periodic orbit

被引:1
作者
Kulkarni, DR [1 ]
Amritkar, RE [1 ]
机构
[1] Phys Res Lab, Ahmedabad 380009, Gujarat, India
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2001年 / 11卷 / 12期
关键词
D O I
10.1142/S0218127401004066
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the method of secure communication suggested by Abarbanel and Linsay, a binary message is encoded by phase modulation of an unstable periodic orbit (UPO) of a chaotic system. It is demonstrated that the encoded message can be decoded from the transmitted signal alone without the knowledge of chaotic system, its orbit, and encoding scheme. The decoding method is based on the fact that errors in single step prediction for models which reconstruct the state space using the local linear approximation are relatively large for the points on UPO in the transmitted signal. This enables us to extract the UPO from the transmitted signal. The identification of UPO is then used to recover the original message.
引用
收藏
页码:3133 / 3136
页数:4
相关论文
共 8 条
[1]   THE ANALYSIS OF OBSERVED CHAOTIC DATA IN PHYSICAL SYSTEMS [J].
ABARBANEL, HDI ;
BROWN, R ;
SIDOROWICH, JJ ;
TSIMRING, LS .
REVIEWS OF MODERN PHYSICS, 1993, 65 (04) :1331-1392
[2]   SECURE COMMUNICATIONS AND UNSTABLE PERIODIC-ORBITS OF STRANGE ATTRACTORS [J].
ABARBANEL, HDI ;
LINSAY, PS .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING, 1993, 40 (10) :643-645
[3]   CIRCUIT IMPLEMENTATION OF SYNCHRONIZED CHAOS WITH APPLICATIONS TO COMMUNICATIONS [J].
CUOMO, KM ;
OPPENHEIM, AV .
PHYSICAL REVIEW LETTERS, 1993, 71 (01) :65-68
[4]   ERGODIC-THEORY OF CHAOS AND STRANGE ATTRACTORS [J].
ECKMANN, JP ;
RUELLE, D .
REVIEWS OF MODERN PHYSICS, 1985, 57 (03) :617-656
[5]   PREDICTING CHAOTIC TIME-SERIES [J].
FARMER, JD ;
SIDOROWICH, JJ .
PHYSICAL REVIEW LETTERS, 1987, 59 (08) :845-848
[6]   GEOMETRY FROM A TIME-SERIES [J].
PACKARD, NH ;
CRUTCHFIELD, JP ;
FARMER, JD ;
SHAW, RS .
PHYSICAL REVIEW LETTERS, 1980, 45 (09) :712-716
[7]   Encoding messages using chaotic synchronization [J].
Parlitz, U ;
Kocarev, L ;
Stojanovski, T ;
Preckel, H .
PHYSICAL REVIEW E, 1996, 53 (05) :4351-4361
[8]   SYNCHRONIZATION IN CHAOTIC SYSTEMS [J].
PECORA, LM ;
CARROLL, TL .
PHYSICAL REVIEW LETTERS, 1990, 64 (08) :821-824