Apoptosis and chemoresistance in transgenic cancer models

被引:55
作者
Schmitt, CA
Lowe, SW
机构
[1] Humboldt Univ, Max Delbruck Ctr Mol Med, Dept Hematol Oncol, D-13353 Berlin, Germany
[2] Humboldt Univ, Virchow Hosp, D-13353 Berlin, Germany
来源
JOURNAL OF MOLECULAR MEDICINE-JMM | 2002年 / 80卷 / 03期
关键词
apoptosis; bcl-2; chemoresistance; gene transfer; p53; transgenic mouse;
D O I
10.1007/s00109-001-0293-3
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Multidrug resistance remains an unresolved problem in clinical oncology. Over a decade ago genes encoding cellular efflux pumps were shown to confer resistance to a broad spectrum of biochemically unrelated anticancer drugs even before the compounds reached their intracellular targets. More recently it has become apparent that many drugs induce a common apoptotic program, such that mutations in this program can also produce multidrug resistance. However, a thorough evaluation of the contribution of apoptotic defects to this "postdamage" drug resistant phenotype is technically complicated, and this has led to uncertainty about the overall significance of apoptosis in therapy-induced cell death. For example, correlative analyses using patient specimens are limited by unknown background mutations in the biopsy material, and assays using cancer cell lines can be biased by unphysiological conditions. We sought to circumvent these restrictions by utilizing a tractable transgenic cancer model to examine the impact of apoptosis on treatment outcome. Here we discuss potential caveats of cell culture based assays, highlight features of genetically engineered mice as potential model systems, and describe a tractable transgenic mouse model to study drug responses in a series of primary lymphomas with genetically defined lesions treated at their natural site.
引用
收藏
页码:137 / 146
页数:10
相关论文
共 62 条
[1]   THE C-MYC ONCOGENE DRIVEN BY IMMUNOGLOBULIN ENHANCERS INDUCES LYMPHOID MALIGNANCY IN TRANSGENIC MICE [J].
ADAMS, JM ;
HARRIS, AW ;
PINKERT, CA ;
CORCORAN, LM ;
ALEXANDER, WS ;
CORY, S ;
PALMITER, RD ;
BRINSTER, RL .
NATURE, 1985, 318 (6046) :533-538
[2]   A farnesyltransferase inhibitor induces tumor regression in transgenic mice harboring multiple oncogenic mutations by mediating alterations in both cell cycle control and apoptosis [J].
Barrington, RE ;
Subler, MA ;
Rands, E ;
Omer, CA ;
Miller, PJ ;
Hundley, JE ;
Koester, SK ;
Troyer, DA ;
Bearss, DJ ;
Conner, MW ;
Gibbs, JB ;
Hamilton, K ;
Koblan, KS ;
Mosser, SD ;
O'Neill, TJ ;
Schaber, MD ;
Senderak, ET ;
Windle, JJ ;
Oliff, A ;
Kohl, NE .
MOLECULAR AND CELLULAR BIOLOGY, 1998, 18 (01) :85-92
[3]   Genetic determinants of response to chemotherapy in transgenic mouse mammary and salivary tumors [J].
Bearss, DJ ;
Subler, MA ;
Hundley, JE ;
Troyer, DA ;
Salinas, RA ;
Windle, JJ .
ONCOGENE, 2000, 19 (08) :1114-1122
[4]  
Browder T, 2000, CANCER RES, V60, P1878
[5]  
Brown JM, 1999, CANCER RES, V59, P1391
[6]   The mammary pathology of genetically engineered mice: the consensus report and recommendations from the Annapolis meeting [J].
Cardiff, RD ;
Anver, MR ;
Gusterson, BA ;
Hennighausen, L ;
Jensen, RA ;
Merino, MJ ;
Rehm, S ;
Russo, J ;
Tavassoli, FA ;
Wakefield, LM ;
Ward, JM ;
Green, JE .
ONCOGENE, 2000, 19 (08) :968-988
[7]  
Chang BD, 1999, CANCER RES, V59, P3761
[8]   MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis [J].
Coussens, LM ;
Tinkle, CL ;
Hanahan, D ;
Werb, Z .
CELL, 2000, 103 (03) :481-490
[9]   E1A signaling to p53 involves the p19ARF tumor suppressor [J].
de Stanchina, E ;
McCurrach, ME ;
Zindy, F ;
Shieh, SY ;
Ferbeyre, G ;
Samuelson, AV ;
Prives, C ;
Roussel, MF ;
Sherr, CJ ;
Lowe, SW .
GENES & DEVELOPMENT, 1998, 12 (15) :2434-2442
[10]   Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis [J].
Eischen, CM ;
Weber, JD ;
Roussel, MF ;
Sherr, CJ ;
Cleveland, JL .
GENES & DEVELOPMENT, 1999, 13 (20) :2658-2669