The spectral extinction coefficients of soot aggregates were studied in the fuel-lean (overfire) region of buoyant turbulent diffusion flames. Extinction measurements were carried out in the wavelength region of 0.2-5.2 mu m for flames fueled with acetylene, propylene, ethylene, and propane, burning in air. The present measurements were combined with earlier measurements of soot morphology and light scattering at 0.514 mu m in order to evaluate the spectral soot refractive indices reported by Dalzell and Sarofim (1969), Lee and Tien (1981), and Chang and Charalampopoulos (1990). The specific extinction coefficients and emissivities were predicted based on Rayleigh-Debye-Gans theory for polydisperse fractal aggregates, which has been recently found to be the best approximation to treat optical cross sections of soot aggregates. The results indicated that available refractive indices of soot do not predict the spectral trends of present measurements in the ultraviolet and infrared regions. Soot complex refractive index was inferred to be m = 1.54 + 0.48i at 0.514 mu m, which is surprisingly in best agreement with the values reported by Dalzell and Sarofim (1969). Additionally, specific extinction coefficients of soot aggregates varied with wavelength as lambda(-0.83) from the visible to the infrared. Finally soot refractive indices were found to be relatively independent of fuel type for the visible and infrared spectral regions over the H/C ratio range of 0.08-0.22.