Prp43p is a DEAH-box spliceosome disassembly factor essential for ribosome biogenesis

被引:96
作者
Combs, DJ
Nagel, RJ
Ares, M
Stevens, SW
机构
[1] Univ Texas, Inst Cellular & Mol Biol, Austin, TX 78712 USA
[2] Univ Texas, Program Cellular & Mol Biol, Austin, TX USA
[3] Univ Calif Santa Cruz, Ctr Mol Biol RNA, Sinsheimer Labs, Santa Cruz, CA 95064 USA
[4] Univ Texas, Sect Mol Genet & Microbiol, Austin, TX 78712 USA
关键词
D O I
10.1128/MCB.26.2.523-534.2006
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The known function of the DEXH/D-box protein Prp43p is the removal of the U2, U5, and U6 snRNPs from the postsplicing lariat-intron ribonucleoprotein complex. We demonstrate that affinity-purified Prp43p-associated material includes the expected spliceosomal components; however, we also identify several preribosomal complexes that are specifically purified with Prp43p. Conditional prp43 mutant alleles confer a 35S pre-rRNA processing defect, with subsequent depletion of 27S and 20S precursors. Upon a shift to a nonpermissive temperature, both large and small-ribosomal-subunit proteins accumulate in the nucleolus of prp43 mutants. Pulse-chase analysis demonstrates delayed kinetics of 35S, 27S, and 20S pre-rRNA processing with turnover of these intermediates. Microarray analysis of pre-mRNA splicing defects in prp43 mutants shows a very mild effect, similar to that of nonessential pre-mRNA splicing factors. Prp43p is the first DEXH/D-box protein shown to function in both RNA polymerase I and polymerase II transcript metabolism. Its essential function is in its newly characterized role in ribosome biogenesis of both ribosomal subunits, positioning Prp43p to regulate both pre-mRNA splicing and ribosome biogenesis.
引用
收藏
页码:523 / 534
页数:12
相关论文
共 51 条
[1]   The 3′ to 5′ degradation of yeast mRNAs is a general mechanism for mRNA turnover that requires the SKI2 DEVH box protein and 3′ to 5′ exonucleases of the exosome complex [J].
Anderson, JSJ ;
Parker, R .
EMBO JOURNAL, 1998, 17 (05) :1497-1506
[2]   Prp43: An RNA helicase-like factor involved in spliceosome disassembly [J].
Arenas, JE ;
Abelson, JN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (22) :11798-11802
[3]   A handful of intron-containing genes produces the lion's share of yeast mRNA [J].
Ares, M ;
Grate, L ;
Pauling, MH .
RNA, 1999, 5 (09) :1138-1139
[4]   Exploring functional relationships between components of the gene expression machinery [J].
Burckin, T ;
Nagel, R ;
Mandel-Gutfreund, Y ;
Shiue, L ;
Clark, TA ;
Chong, JL ;
Chang, TH ;
Squazzo, S ;
Hartzog, G ;
Ares, M .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2005, 12 (02) :175-182
[5]   ISOLATION AND CHARACTERIZATION OF THE GENE ENCODING YEAST DEBRANCHING ENZYME [J].
CHAPMAN, KB ;
BOEKE, JD .
CELL, 1991, 65 (03) :483-492
[6]   Specific alterations of U1-C protein or U1 small nuclear RNA can eliminate the requirement of Prp28p, an essential DEAD box splicing factor [J].
Chen, JYF ;
Stands, L ;
Staley, JP ;
Jackups, RR ;
Latus, LJ ;
Chang, TH .
MOLECULAR CELL, 2001, 7 (01) :227-232
[7]   ELECTRON-MICROSCOPIC IDENTIFICATION OF THE YEAST SPLICEOSOME [J].
CLARK, MW ;
GOELZ, S ;
ABELSON, J .
EMBO JOURNAL, 1988, 7 (12) :3829-3836
[8]   Genomewide analysis of mRNA processing in yeast using splicing-specific microarrays [J].
Clark, TA ;
Sugnet, CW ;
Ares, M .
SCIENCE, 2002, 296 (5569) :907-910
[9]  
COMPANY M, 1991, NATURE, V349, P487, DOI 10.1038/349487a0
[10]   Protein displacement by DExH/D "RNA helicases" without duplex unwinding [J].
Fairman, ME ;
Maroney, PA ;
Wang, W ;
Bowers, HA ;
Gollnick, P ;
Nilsen, TW ;
Jankowsky, E .
SCIENCE, 2004, 304 (5671) :730-734