Stability of equilibria and fixed points of conservative systems

被引:40
作者
Cabral, HE
Meyer, KR
机构
[1] Univ Fed Pernambuco, Dept Matemat, Recife, PE, Brazil
[2] Univ Cincinnati, Dept Math Sci, Cincinnati, OH 45221 USA
关键词
D O I
10.1088/0951-7715/12/5/309
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the stability and instability of an equilibrium point of a Hamiltonian system of two degrees of freedom in certain resonance cases. We also consider the stability or instability of a fixed point of an area-preserving mapping in certain resonance cases. The stability criteria are established by Moser's invariant curve theorem and the instability is established by Chetaev's theorem.
引用
收藏
页码:1351 / 1362
页数:12
相关论文
共 13 条
[1]  
ALFRIEND J, 1970, CELESTIAL MECH, V1, P351
[2]  
ALFRIEND J, 1971, CELESTIAL MECH, V4, P60
[3]  
[Anonymous], 1846, CRELLE
[4]  
Arnold V. I., 1963, RUSS MATH SURV, V18, P13, DOI DOI 10.1070/RM1963V018N05ABEH004130
[6]  
Chetaev NG., 1961, STABILITY MOTION
[7]  
HALL GR, 1995, INTRO HAMILTONIAN DY
[8]  
Markeev A., 1978, LIBRATION POINTS CEL
[9]  
MARKEEV AP, 1966, APPL MATH MECH, V33, P105
[10]   GENERIC STABILITY PROPERTIES OF PERIODIC POINTS [J].
MEYER, KR .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 154 (FEB) :273-&