Interlimb reflexes and synaptic plasticity become evident months after human spinal cord injury

被引:48
作者
Calancie, B
Molano, MR
Broton, JG
机构
[1] Univ Miami, Sch Med, Miami Project Cure Paralysis, Miami, FL 33136 USA
[2] Univ Miami, Sch Med, Dept Neurol Surg, Miami, FL 33136 USA
关键词
spinal cord injury; plasticity; regenerative sprouting; reflex; human; cervical;
D O I
10.1093/brain/awf114
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Persons with long-standing injury to the cervical spinal cord resulting in complete or partial paralysis typically develop a wide spectrum of involuntary movements in muscles receiving innervation caudal to the level of injury. We have previously shown that these movements include brief and discrete contraction of muscles in the hand and forearm in response to innocuous sensory stimulation to the feet and legs, but we have been unable to replicate these interlimb reflexes in able-bodied subjects. Properties of these muscle responses indicate that the synaptic contacts between ascending sensory fibres and motor neurones of the cervical enlargement are more efficacious than normal. If these connections are present at all times, and require the more rostrally-placed spinal cord injury to allow their emergence, one might expect their appearance relatively soon following injury, as has been shown for studies of 'latent' synapses. Conversely, delayed appearance of these interlimb reflexes would suggest either the development of new synaptic connections or a profound strengthening of existing circuits in the cervical spinal cord due to a combination of afferent target loss and motor neurone denervation from motor tracts originating rostral to the injury site. In this study, we used repeated examinations of persons with acute injury to the cervical spinal cord to examine the time post-injury at which interlimb reflexes are first seen. Using tibial nerve stimulation at the knee as a screening test, a total of 24 subjects were found to develop interlimb reflexes following spinal cord injury. Latencies between stimulation and EMG were as brief as 32 ms for muscles of the forearm and 44 ms for muscles in the hand. These minimal delays all but rule out a supraspinal route for these interlimb reflexes. Interlimb reflexes first became evident no sooner than similar to6 months following injury, and in some individuals were not seen until well over 1 year post-injury. Enhanced lower limb segmental excitability had emerged in nearly all of these subjects weeks or months prior to the first appearance of interlimb reflexes, arguing against a manifestation of traditional post-traumatic spasticity as a basis for this activity. This prolonged delay between time of injury and emergence of interlimb reflex activity lends support to the hypothesis that this activity represents an example of plasticity-and perhaps 'regenerative sprouting'-in the human spinal cord following traumatic injury.
引用
收藏
页码:1150 / 1161
页数:12
相关论文
共 60 条
[1]   Central cord syndrome of cervical spinal cord injury: Widespread changes in muscle recruitment studied by voluntary contractions and transcranial magnetic stimulation [J].
Alexeeva, N ;
Broton, JG ;
Suys, S ;
Calancie, B .
EXPERIMENTAL NEUROLOGY, 1997, 148 (02) :399-406
[2]  
BACHYRITA P, 1981, ARCH PHYS MED REHAB, V62, P413
[3]   Tapping into spinal circuits to restore motor function [J].
Barbeau, H ;
McCrea, DA ;
O'Donovan, MJ ;
Rossignol, S ;
Grill, WM ;
Lemay, MA .
BRAIN RESEARCH REVIEWS, 1999, 30 (01) :27-51
[4]  
BECERRA JL, 1995, AM J NEURORADIOL, V16, P125
[5]  
BEDBROOK G M, 1963, Paraplegia, V1, P215
[6]   RAPID REVERSIBLE MODULATION OF HUMAN MOTOR OUTPUTS AFTER TRANSIENT DEAFFERENTATION OF THE FOREARM - A STUDY WITH TRANSCRANIAL MAGNETIC STIMULATION [J].
BRASILNETO, JP ;
COHEN, LG ;
PASCUALLEONE, A ;
JABIR, FK ;
WALL, RT ;
HALLETT, M .
NEUROLOGY, 1992, 42 (07) :1302-1306
[7]   EFFECTS OF HINDLIMB NERVE-SECTION ON LUMBOSACRAL DORSAL HORN NEURONS IN THE CAT [J].
BROWN, AG ;
FYFFE, REW ;
NOBLE, R ;
ROWE, MJ .
JOURNAL OF PHYSIOLOGY-LONDON, 1984, 354 (SEP) :375-394
[8]  
BUNGE RP, 1993, ADV NEUROL, V59, P75
[9]  
BUNGE RP, 1997, ADV NEUROL, V72, P303
[10]   Central nervous system plasticity after spinal cord injury in man: Interlimb reflexes and the influence of cutaneous stimulation [J].
Calancie, B ;
Lutton, S ;
Broton, JG .
ELECTROMYOGRAPHY AND MOTOR CONTROL-ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1996, 101 (04) :304-315