A new clustering technique for function approximation

被引:104
作者
González, J [1 ]
Rojas, I [1 ]
Pomares, H [1 ]
Ortega, J [1 ]
Prieto, A [1 ]
机构
[1] Univ Granada, Dept Comp Architecture & Comp Technol, E-18071 Granada, Spain
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 2002年 / 13卷 / 01期
关键词
clustering techniques; function approximation; model initialization;
D O I
10.1109/72.977289
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To date, clustering techniques have always been oriented to solve classification and pattern recognition problems. However, some authors have applied them unchanged to construct initial models for function approximators. Nevertheless, classification and function approximation problems present quite different objectives. Therefore it is necessary to design new clustering algorithms specialized in the problem of function approximation. This paper presents a new clustering technique, specially designed for function approximation problems, which improves the performance of the approximator system obtained, compared with other models derived from traditional classification oriented clustering algorithms and input-output clustering techniques.
引用
收藏
页码:132 / 142
页数:11
相关论文
共 46 条
  • [1] A survey of fuzzy clustering algorithms for pattern recognition - Part II
    Baraldi, A
    Blonda, P
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 1999, 29 (06): : 786 - 801
  • [2] DYNAMIC PROGRAMMING
    BELLMAN, R
    [J]. SCIENCE, 1966, 153 (3731) : 34 - &
  • [3] Bezdek J. C., 1981, Pattern recognition with fuzzy objective function algorithms
  • [4] ORTHOGONAL LEAST-SQUARES METHODS AND THEIR APPLICATION TO NON-LINEAR SYSTEM-IDENTIFICATION
    CHEN, S
    BILLINGS, SA
    LUO, W
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1989, 50 (05) : 1873 - 1896
  • [5] ORTHOGONAL LEAST-SQUARES LEARNING ALGORITHM FOR RADIAL BASIS FUNCTION NETWORKS
    CHEN, S
    COWAN, CFN
    GRANT, PM
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1991, 2 (02): : 302 - 309
  • [6] DELGADO M, 1996, P 6 INT C IPMU 96 GR, V1, P563
  • [7] Dennis, 1996, NUMERICAL METHODS UN
  • [8] Duda R. O., 2000, Pattern Classification and Scene Analysis, V2nd
  • [9] Dunn J. C., 1973, Journal of Cybernetics, V3, P32, DOI 10.1080/01969727308546046
  • [10] Gersho A., 1992, Vector quantization and signal compression