Convergence of simulated annealing using Foster-Lyapunov criteria

被引:18
作者
Andrieu, C
Breyer, LA
Doucet, A
机构
[1] Univ Bristol, Stat Grp, Dept Math, Bristol BS8 1TW, Avon, England
[2] Univ Lancaster, Fylde Coll, Dept Math & Stat, Lancaster LA1 4YF, England
[3] Univ Melbourne, Dept Elect & Elect Engn, Parkville, Vic 3010, Australia
关键词
simulated annealing; Markov chain Monte Carlo; optimization; Foster-Lyapunov; nonhomogeneous Markov chain;
D O I
10.1017/S0021900200019173
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Simulated annealing is a popular and much studied method for maximizing functions on finite or compact spaces. For noncompact state spaces, the method is still sound, but convergence results are scarce, We show here how to prove convergence in such cases, for Markov chains satisfying suitable drift and minorization conditions.
引用
收藏
页码:975 / 994
页数:20
相关论文
共 23 条
[1]   Simulated annealing for maximum A Posteriori parameter estimation of hidden Markov models [J].
Andrieu, C ;
Doucet, A .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (03) :994-1004
[2]  
[Anonymous], 1992, Stochastic Stability of Markov chains
[3]  
[Anonymous], 1987, SIMULATED ANNEALING
[4]  
Billingsley P., 1985, PROBABILITY MEASURE
[5]   V-Subgeometric ergodicity for a Hastings-Metropolis algorithm [J].
Fort, G ;
Moulines, E .
STATISTICS & PROBABILITY LETTERS, 2000, 49 (04) :401-410
[6]  
FORT G, 2001, UNPUB GEOMETRICALLY
[7]   METROPOLIS-TYPE ANNEALING ALGORITHMS FOR GLOBAL OPTIMIZATION IN RD [J].
GELFAND, SB ;
MITTER, SK .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1993, 31 (01) :111-131
[8]   STOCHASTIC RELAXATION, GIBBS DISTRIBUTIONS, AND THE BAYESIAN RESTORATION OF IMAGES [J].
GEMAN, S ;
GEMAN, D .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1984, 6 (06) :721-741
[9]   SIMULATED ANNEALING PROCESS IN GENERAL STATE-SPACE [J].
HAARIO, H ;
SAKSMAN, E .
ADVANCES IN APPLIED PROBABILITY, 1991, 23 (04) :866-893
[10]  
JARNER SF, 2001, IN PRESS ANN APPL PR