Desensitization of μ-opioid receptor-evoked potassium currents:: Initiation at the receptor, expression at the effector

被引:64
作者
Blanchet, C
Lüscher, C
机构
[1] Univ Geneva, Dept Physiol, CH-1211 Geneva, Switzerland
[2] Univ Geneva, Dept Neurol, CH-1211 Geneva, Switzerland
关键词
D O I
10.1073/pnas.072075399
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Many G protein-coupled receptor-mediated responses desensitize within minutes. Sustained stimulation of mu-opioid receptors (MORs), which primarily signal through G(i/o) proteins, leads to activation and subsequent desensitization of G protein-coupled inwardly rectifying potassium (GIRK) currents. We observed that in neurons of the locus coeruleus, which express among the highest levels of MORs in the brain, the degree of desensitization depended on the intensity of receptor stimulation, indicating that the process is initiated at the receptor. Interestingly, while GIRK-mediated postsynaptic inhibition substantially desensitized within 15 min, presynaptic inhibition of afferent transmission, which involves other effector systems, remained constant, suggesting that the postsynaptic desensitization we observed is expressed at the effector. We show that desensitized GIRK currents can gradually be reactivated by additional G protein signals of increasing intensity and present evidence that desensitization is a G protein-mediated process. Finally, desensitization of MOR-induced GIRK currents had heterologous effects on responses mediated by other G protein-coupled receptors converging onto the same population of GIRK channels. Taken together, our results provide evidence for a form of desensitization mediated by a slowly developing G protein-dependent pathway, initiated at the MORs and leading to competitive inhibition of GIRK channel activation. This implies that MORs exert a bidirectional action on GIRK channels.
引用
收藏
页码:4674 / 4679
页数:6
相关论文
共 35 条
[1]   COMMON ALPHA-2-EFFECTOR AND OPIATE EFFECTOR MECHANISMS IN THE LOCUS-COERULEUS - INTRACELLULAR STUDIES IN BRAIN-SLICES [J].
AGHAJANIAN, GK ;
WANG, YY .
NEUROPHARMACOLOGY, 1987, 26 (7B) :793-799
[2]  
Alvarez-Maubecin V, 2000, J NEUROSCI, V20, P4091
[3]   MECHANISM OF MU-OPIOID RECEPTOR-MEDIATED PRESYNAPTIC INHIBITION IN THE RAT HIPPOCAMPUS IN-VITRO [J].
CAPOGNA, M ;
GAHWILER, BH ;
THOMPSON, SM .
JOURNAL OF PHYSIOLOGY-LONDON, 1993, 470 :539-558
[4]  
CHRISTIE MJ, 1987, MOL PHARMACOL, V32, P633
[5]  
CHRISTIE MJ, 1989, J NEUROSCI, V9, P3584
[6]   Evidence that the nucleotide exchange and hydrolysis cycle of G proteins causes acute desensitization of G-protein gated inward rectifier K+ channels [J].
Chuang, HH ;
Yu, M ;
Jan, YN ;
Jan, LY .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (20) :11727-11732
[7]   OPIOID INHIBITION OF GABA RELEASE FROM PRESYNAPTIC TERMINALS OF RAT HIPPOCAMPAL INTERNEURONS [J].
COHEN, GA ;
DOZE, VA ;
MADISON, DV .
NEURON, 1992, 9 (02) :325-335
[8]   Switching of the coupling of the beta(2)-adrenergic receptor to different G proteins by protein kinase A [J].
Daaka, Y ;
Luttrell, LM ;
Lefkowitz, RJ .
NATURE, 1997, 390 (6655) :88-91
[9]  
Ferguson SSG, 2001, PHARMACOL REV, V53, P1
[10]   Endocytosis of the mu opioid receptor reduces tolerance and a cellular hallmark of opiate withdrawal [J].
Finn, AK ;
Whistler, JL .
NEURON, 2001, 32 (05) :829-839